S FH B AT A R)
Nyquest Technology Co., Ltd.

NYASM

Nyquest MCU Assembler

Version 5.6
Nov. 25, 2025

NYQUEST TECHNOLOGY CO., Ltd. reserves the right to change this document without prior notice. Information provided by NYQUEST is believed to be accurate and
reliable. However, NYQUEST makes no warranty for any errors which may appear in this document. Contact NYQUEST to obtain the latest version of device specifications
before placing your orders. No responsibility is assumed by NYQUEST for any infringement of patent or other rights of third parties which may result from its use. In addition,
NYQUEST products are not authorized for use as critical components in life support devices/systems or aviation devices/systems, where a malfunction or failure of the

product may reasonably be expected to result in significant injury to the user, without the express written approval of NYQUEST.

(\) Nyquest NYASM User Manual

Table of Contents

(O CT=T o 1= = 1IN 1o e o 00 F= 1o o 1S 6
1.1 ADOUE THIS GUIEiuee ittt e e e et e e e e e e e e e et e e e eaaeeeeens 6
1.1.1 DOCUMENE LAYOUL ..., 6

1.1.2 Conventions Used in TRIS GUIEcooooveieiiiiiiiiiiieeeee 6

R R U oo - = S 7

1.2 Recommended REAINGcouuiuiiiiiiiieie et eeeeens 7

1.3 The Nyquest Internet Web Site..........oooiiiiiiii e 7

1.4 Development Systems Customer Notification Serviceccccc, 8

LR I O10 L] (o] 41T RS U] o] o To] AP OO O ORI 8

W T A Y | o (=37 -, 9
2.1 SyStem REQUIFEMENTS ... e e e e e et e e e e e e e e e ee b b e eeeeeeeeees 9
2.2 WRAE NYASM DOES ...ttt e e e e e e ettt e e e e e e e e e ettt e e e e e eeeeesba e eeeeaeeenes 9
2.3 ComPAtiDility ISSUESt e e e e e aaeaaae 9

3 NYASM Installation and Getting Started............ccceeeeiiiiiiiiir e 10
R T I [a1 = 11 = 14 o] o PO 10
3.2 OVEIVIEW OF ASSEIMDIET ...ttt e e e e et e e e e e e e e e e e 10
3.3 Assembler INput/OULPUL FIlES ... 11
3.3.1 Source Code FOrMat ((ASM)ooo ettt 11

3.3.2 LiSting File FOIMAL ((LST)eveeeeeeeeeeeeeee ettt ettt ettt e e e e ettt e e e e e ssssassaenaaeeeas 13

3.3.3 Error File FOIMAt ((ERR)......oueeeeeeeeee ettt nea s 14

3.3.4 HEX File FOIMALS ((HEX)........eeeeeeeeeeeeeeee ettt ettt ettt a e e e e e ettt e e e e e s ssssnanaaeeeas 14

3.3.5 Symbol and Debug File FOrmat (.DBG).............cooouiiiiiiiie ettt 14

4 Using NYASM With WINAOWS.......ccoiieemmiiiiiiiiiirisessssss s s s s s sssssssss s s s s s s s snnnnssssssssssssessnnnnsssnns 15
A1 USEI INTEITACEottt et e e e e e e e et e e e e e e e e e eaba e eeaeeeennes 15
S [01 o T ¥ o1 1 o] o TS PO 16

5 Directive LANQUAQJEcccoeiiiiimmmmniiiiiisssssssnssssssssssssssssssssssssssssssssnssnsssssssssssssessnnnnnssssssssnens 17
ST B o 1o 11T | - S 17
5.2 NY4, NY5, NY 7, NYBA, NY O e e e 17
5.2.1 DIrECHIVE SUMIMAIY ..ottt ettt ettt e e aeannea s 17

5.2.2 BREAK— Jump Out Point in @ LOGIC BIOCKcouuieeeeeeee ettt eaesiseaaaa e 19

5.2.3 CASE — Define an Option Item Of SWITCH...........ooo e 20

5.2.4 CBLOCK — Define @ BIOCK Of CONSIANISc...vveeeeieeeeeeseea ettt ee ettt a e esssireaaaaa e 21

5.2.5 CONSTANT — Declare Symbol CONSIANTc.oocueeiiiiiiie et 21

5.2.6 CONTINUE - Ignore Statements Afterward and Start Next LOOPcccccccoeevcvvveeaseeeeisiirieenannn, 22

5.2.7 DEFAULT - Define an Unconditional Item of SWITCHccccoovvvviiiiiiiiiiiiiiiiiee 23

5.2.8 #DEFINE — Define a Text SUDSHEULION Label...............cccccueeeeeieeeeesiieiieee e eeesiea e eeesireaaaaae 23

2 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

5.2.9

5.2.10
5.2.11
5.2.12
5.2.13
5.2.14
5.2.15
5.2.16
5.2.17
5.2.18
5.2.19
5.2.20
5.2.21
5.2.22
5.2.23
5.2.24
5.2.25
5.2.26
5.2.27
5.2.28
5.2.29
5.2.30
5.2.31
5.2.32
5.2.33
5.2.34
5.2.35
5.2.36
5.2.37
5.2.38
5.2.39
5.2.40
5.2.41
5.2.42
5.2.43
5.2.44
5.2.45
5.2.46
5.2.47
5.2.48
5.2.49
5.2.50

5.3.1
5.3.2

DW — Declare Data Of ONE WOIQcoooueieeeieeee ettt e e e nineea e 24
DWS — Encode Text @S 16-Dit DALcoooeeeeeeeeeeee e 24
ELSE — Begin Alternative ASSEMDBIY BIOCK tO IF.............c...ouvveeeeeeeeeeeceeieee ettt 24
END — ENd Program BIOCKouu ittt e e nanee e 25
ENDC — End an Automatic ConsStant BIOCKcocvuueiiiiiiee et 25
ENDFOR — ENA @ FOE LOOP ...cceeeeeeeeeeeee et e e e e e e e e e e e 25
ENDIF — End Conditional ASSEMBIY BIOCKcooueeeeeeeeieiise ettt eesssreaaa e 26
ENDM — End @ Macro DefiNitiON..............ooooo oo a e 26
ENDS — COAING CONVEINIBINCE ...ttt ettt a e e e e s ettt e e e e e assassaaaaaeeans 26
ENDSW — ENd @ SWILCH BIOCK ... 27
ENDW — ENQ @ WHIIE LOOPevveeeeeeeeeeeeeeeeeetaeaeteessstesssstssesssasssssssssnsnsnnnsnnnnnnnnnnns 27
EQU — Define an ASSembler CONSIANTeeeeieeeeeeee e 27
ERROR — ISSUE @N EFTOr MESSAJEoeeeeeeeeeeeea ettt e ettt e e e e e sssssaaaaaaees 27
EXITM — EXit frOm @ MACHO.........ccoooneeeeeeeeeeeee e e e eeaa e e 28
EXPAND — EXpand MacCrO LiSHNQG...........uuuuuuueueueeeieieieieseseiesesasesesesesssssasssssssssssssssssssssnsnsnsnnssnnnnnsnnes 28
EXTERN — EXternal SYMDOI............cooueiiiiieeeee ettt 29
FOR — Perform For Loop While Iterator Meets the Conditionccccceeeeeeccvveeeeseeeieiiiieeeaan, 29
IF — Begin Conditionally Assembled COde BIOCK.................couiiiieiiiisiiiiisiee e 29
IFDEF — Execute If Symbol has Been DEfiNEd.................eeueeeeeeeciieiaaeeeeseeiiieeaa e eeesiiieieaaaaeeeasins 30
IFNDEF — Execute If Symbol has not Been Defined.................occoeeiiniiiiiiiiiiiiiiee e 30
#INCLUDATA — Include Binary Data File....................ccoeeeeueeeeiseeeeeseiiieiieee et eesssiseaaaaaen 31
#INCLUDE — Include Additional SOUICE Fileooo e 31
LINES — Reset Line Count per LiStiNg PagGeccoeeeuueeeiaeeeeeseiiiiieaa e eeesieieaaa e e esssireaaaaaees 32
LIST — LiStING OPUHONS ..ottt ettt et e et e e e st e e ssneaeenans 32
LOCAL — Declare Local Macro Variable....................occeeeiiiueeeeiiiie e 32
MACRO — Declare Macro DEFINItIONc.o..ueeeeeeeee e 33
MAXMACRODEPTH — Define Maximum Macro DEPLhccoeeceveeeeeseeeeesiiiiiiaes e, 34
MESSG — Create User Defined MESSAQEoeeiiuiiiiiieee et 34
NEWPAGE — Insert LiSting PagQe EJECT...............uuveeieeeeieseeee ettt easssreaaaa e 34
NOEXPAND — Turn off Macro EXPANSIONooee e e 35
ORG — S€t Program OFiQIN............cuuueeeeeeieeeeee e eeeeetae e e e ettt aa e e e s ettt e e e e e s sssstaaaaeeeessssssenees 35
ORGALIGN — Set Program Origin With Address AlIGNMment................c.ooecveeeiioeeiiniiee e 35
RADIX — SpeCify DEfauUlt RAGIXveeeieeeeeeeeee ettt e ettt a e e e sssrreaaaaeeeas 35
REPEAT — Begin a Repeat-Until Loop BlIock Definitionccooeeeieooiiiiieeeeeeeeeaee 36
SUBTITLE — Specify Program SUDEHEcooeeeeeeeeee ettt eesteeea e eseteaaaaee e 36
SWITCH - Begin Conditional Switching ASSembly BIOCKccoocoouimioiiiiiiiieee e 37
TITLE — SpeCify Program Title.................uueeeiieee ettt e ettt e e e e st aa e e e e ssasseaes 37
#UNDEFINE — Delete a Substitution Labelooo oo 38
UNTIL — Perform Loop Until CONAitioN iS TIUEceuueeeeeseiiriieeeeeeeeieeia e eeesseeaa e e e 38
VARIABLE — Declare Symbol Variable................c.c.eoi it 39
WHILE — Perform Loop While CoNndition iS TIUEccoeeeuueeeiaeeeesseiiiieia e et eeesssssees 39
ALIGN2 — AlignThe Staring AddreSss Of PrOGIam...........c.couvueeiiiiieeeieieeee e 40
.. 40
DIFECHVE SUMIMAIY ..ottt ettt et e e e et et e e e e e e s sttt e e e e e ssssssnaaaaeeaas 40
And — Boolean AND OPEIAtiON.............oooe e a e e e e 43

3 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

5.3.3

5.3.4

5.3.5

5.3.6

5.3.7

5.3.8

5.3.9

5.3.10
5.3.11
5.3.12
5.3.13
5.3.14
5.3.15
5.3.16
5.3.17
5.3.18
5.3.19
5.3.20
5.3.21
5.3.22
5.3.23
5.3.24
5.3.25
5.3.26
5.3.27
5.3.28
5.3.29
5.3.30
5.3.31
5.3.32
5.3.33
5.3.34
5.3.35
5.3.36
5.3.37
5.3.38
5.3.39
5.3.40
5.3.41
5.3.42
5.3.43
5.3.44
5.3.45
5.3.46
5.3.47

.BANKBYTE — AcCeSS BanK Byte..........cocooveveeeieeeieeeeeeeeeeeeeeeeee e 43
BITAND - Bit AND OPEIALION. ... e e e e e eeaaa e e 43
BITNOT = Bit NOT OPEIALION ...ttt e e e e e ettt e e e e e e sssstaaaaeeessinans 43
BITOR — Bit XOR OPEIaHON ...ttt e e e et a e e e e e eaaeeeean 44
BITXOR — Bit XOR OPEIALION.eveeeee e et ettt e ettt e e e e et e e e e e e e ssssssaaaaaeeassisnns 44
BLANK — ChecK BIank SYMDOL..............couueiieieeeee ettt 44
ABYTE — LOW BYE@......eeeeeeeeeeeee ettt ettt e e 45
LCEIL — UNCONAIEIONAI CAITY ...ttt e e stnee e 45
.CODE - The abbreviation of .S€gMENt “COUR”ccurreiieaeeeeescieia e eeesesteeea e eeestiiaaaa e e eeasans 45
.DATA - The abbreviation of .segment “data’...............cccoooriiiiiiiiiii e 45
DEFINE — DEOFINITION.coeeeeeeeeeeeeee ettt ettt e e e e e e e e e e sanea e e e s 46
.DEFINED — Check Whether the Symbol IS Defined..............cccoovueeiimieiiiiiiiieiiiiee e 46
.ELSE — Begin Alternative ASSembly BIOCK tO IF..............oooeeeeeeeeeieeeeeeseieeee et 47
.ELSEIF —Begin Alternative Assembly Block After IF And The Specified Condition Is True.......... 47
.ENDIF — End Conditional ASSEMDBIY BIOCKcooeereeeeeseeeeeeieea e eeseeeeea e estiteaaaa e eaesns 48
.ENDMACRO — End Macro Defined BIOCKooo oo 48
.ENDREPEAT — End the Repeating SCOPE.............coocoreeeieeeeeeesiieeiaeeeeesteiteeaa e eeesstseeaaaaeeassans 48
.ENDSCOPE — End Variable SCOPE..........cou oo 49
LENDSTRUCT — ENd StruCture BIOCK.............cocoueeeeeiee et 49
.EQU — Define an Assembler CONSIANToooi oo 49
.ERROR —Issue A Compilation Error MESSAQEeuuueeeeeesireeiaaeeeessciisieeaaeeeessiissseaaaaeeaasans 49
LEXPORT — EXPOIt SYMBOL.....cccooieiiieeeeee ettt atnee e 50
EXPORTZP — Export Zero Page SYMBOIcooeoueeeieeeeeeesiiieiaaeeeesteteeaa e eeesssstaaaaaeeaasans 50
.EXTERN — Declare External SYmbOIoooii it 50
.EXTERNZP — Declare Global Zero Page SymboOl..............ccooeovureeiieeeeesiiiiiieiaeeeeesiiiieieaaaaeesasans 51
.FLOOR — Unconditional ROUNT DOWN.................ooooiieeeeeee e 51
HIBYTE — HiQR BYTE ..ottt ettt e e e e 51
AF — CONAIEIONGI ASSEIMBIY ...ttt e st a e 52
AFBLANK — Conditional Assembly If Parameter IS Blankccccccoevecvoveeeseeeeesiiiniieasaeeeenns 52
.IFDEF — Conditional ASSembly If DefiN@dcccomumiiiiiiiiie e 52
AFNBLANK — Conditional Assembly If Parameter Isn’t Blankcccccovveeeieeeeesciiinienaseeesasns 53
.IFNDEF — Conditional Assembly If UNdefined...............ccoovuueiiiiieiiiiiiii e 53
AMPORT = IMPOIt SYMBOL........c....eeeeeeeeeeeeeee ettt ettt e e e e ettt a e e e e st taaaaeeassnans 53
AMPORTZP — Import Zero Page SYMbBOIooo it 53
ANCBIN = INSEIT BINAIY FilE...........oeeeeeeeeeeeeee ettt ettt a e e e e st aaaaeeessaans 54
ANCLUDE — INCIUAE Fil@.........ooeeeeeeeeeeeee ettt e e et a e st a e e atsaaaeansenaenaes 54
LOBYTE — LOW BYE@ ..ot ettt ettt e e e e e e e 55
.LOCAL — Declare Local Macro Variable.....................ooo oo 55
MACRO — DECIAIE MACKO ...ttt e et e e e e 55
MOD — RemaiNder OPEIatiONo e e e e e e eeaaee e 56
.NOT — Boolean ReVEISE OPEIratiON.............ccueeuiieeeeesiiieieeeeeeeesteeea e e e e ettt aa e e e e sssssssaaaaeeeassans 56
LOR — BOOIEAN OF OPEIALON ..ot e e e e e e e e e eaaeeeeas 56
LORG — St Program OFiQiN.............uuuuuieeeeeeieeieee e et etette e e ettt e e et e et taaaa e e s asssssaaaaaeessssnns 56
.REPEAT - Begin a Repeat-Until Loop Block Definitiono.ccooeeeereeoiiiiieeeeeeeeeeee 57
JRES — RESEIVE SPACE......cooeee ettt ettt e ettt e e e e e ettt et e e e e e st aaaaeeeassnans 57

4 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

5.3.48 .ROUND — ROUNG ..ot e ettt e e ettt e e e e e e ettt ta e e e e e e sesasteeaeeeaaas 57

5.3.49 .SCOPE — Start Variable SCOPEoo oo a e 57

5.3.50 .SEGMENT — Program SE@QIMENL............cuueweeeeeeeeeeieeeeeeseeteteeae e e eeestettaaa e e ess st eaaaaeessssssssanaaaaees 58

85.3.51 .SETCPU — SEIUP CPU ... e et aeeaeaeneneaenn 58

LR R Y o [A =Y Y o 59

5.3.53 .SHR — RIQRE SRft........coveeeeeeeeeeeee ettt ettt ettt 59

5.3.54 .STRING — ACCESS SHIINQ ...ttt ettt e e et e ettt a e e e e e s sttt e e e e e sssssssnaaaaenaas 59

5.3.55 WORD = WOKU. ...ttt ettt e e et e ettt te e e e e e st eeaeeeaaas 59

5.3.56 . XOR — B00I€aNn EXCIUSIVE OFccooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 60

L 1P T o N I Ty T ¥ - T - 61
6.1 Macro Syntax for NY4, NY5, NY7, NY8A, NY O ... 61

(o O B Y - Lo (o N B = To 1 L= SN 61

6.7.2 TeXt SUDSHIEULION ... 61

6.7.3 MACIO USAQGE ...ttt ettt et e e a e 62

6.2 Macro Syntax fOr NY 8L i e e e e e e e et r e e e e e e e e e aanns 62
6.2.7 MAGCRO SYNAX....cccueieeeeeeeeeee ettt ettt e e et e et e et e et e e st e et e et e s e e eaea s 62

6.2.2 MACIO DIFECHIVES ...ttt e ettt e e e e ettt e e e e e et te e e e e e e e et aaaeeaaeeeessans 63

B.2.3 TOXE SUDSHIULION ...ttt ettt e e e e e et ee e e et teeeeanaaes 63

6.2.4 MaACIO USAQGE ... 64

7 Expression Syntax and Operation ... 65
.1 NY4, NY S, NY 7, NY A, NY O e et e et e et e e e e e et e e et e eeenees 65
7.1.1 Numeric Constants @A RAGIXuuee ettt e e e et e e e eaeeeaaen 65

7.1.2 HIGH/MIQILOW ...ttt ettt ettt e e et e e et e e et a e e et e e e esares 67

7.1.3 INCrement/DeCrEmMENt (FH/==)oo o 67

A 1 <1 68
7.2.1 Numeric constants @nd RAGIX..............uuuueeeee ettt e ettt e e e e et raaaeeaaaes 68

7.2.2 HIGA/MIG/LOW ...ttt ettt et et e et e e et e et e e st e e et aeessaeeseseaasaeans 69

8 ReVISION HiStOry..... oo s s r s r s rr s nnnnas 70
Appendix A - QUICK REfEreNCe nnnnnn 74
AT NYASM QUICK REFEIENCEc.eieeeeeee e ettt et e e e e e e e e e e e e eaaas 74
2 . 1 T 79
APPENAIX B = GlOSSANYccciieeeeiiiiiiiririsessss s s sssss s s r s ssss s s s s s e s e nnnnns s s s e s s e e nnnnnnnnnsnn 85
T I =Y o 0 T 85

5 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

1 General Information

This first chapter contains general information that will be useful to know before working with NYASM.

1.1 About This Guide

1.1.1

1.1.2

Document Layout

This document describes how to use NYASM to develop code for Nyquest micro-controller

applications. The user’s guide layout is as follows.

2. NYASM Preview: Defines NYASM and describes what it does and how it works with other tools.
3. NYASM Installation and Getting Started: Describes how to install NYASM and gives an overview of

operation.
4. Using NYASM with Windows: Describes how to use NYASM with Microsoft Windows via a Windows

shell interface.

5. Directive Language: Describes the NYASM programming language including statements, operators,

variables, and other elements.

6. Macro Language: Describes how to use NYASM's built-in macro processor.

7. Expression Syntax and Operation: Provides guidelines for using complex expressions in NYASM

source files.
Appendix A - Quick Reference: Lists Nyquest MCU device instruction sets, NYASM quick reference,
and 4-bit MCU list.
Appendix B - NYASM Errors/Warnings: Contains a descriptive list of the errors, and warnings
generated by NYASM.

Conventions Used in This Guide

This manual uses the following documentation conventions:

Directive Description Syntax
Arial Font User-entered code or sample code. |#define BITWIDTH
Angle Brackets: <> |Variables. Text user supplied. <label>, <exp>

Curly Brackets and [Choice of mutually exclusive

Pipe Character: { |} |arguments. an OR selection error level {0 | 1}

[<label>] db

Square Brackets: [] |Could be omit.
<expr>[,<expr>,...,<expr>]

Used to imply, but not show,

Ellipses: ... additional text that is not relevant to |List “list_option”, ...,“list_option”
the example.
0xnn Represents a hexadecimal number OXFF, 0x3B

where n is a hexadecimal digit.

6 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

1.1.3 Updates

1.2

1.3

All documentation becomes dated, and this user’'s manual is no exception. Since NYASM, and other
Nyquest tools are constantly evolving to meet customer needs, some actual dialogs and/or tool
descriptions may differ from those in this document. Please refer to our web site to obtain the latest

documentation available.

Recommended Reading

This user's guide describes how to use NYASM. The user may also find the data sheets for specific

micro-controller devices informative in developing firmware.

* RevisionHistory. TXT
For the latest information on using NYASM, read the REVISIONHISTORY files (ASCII text files)
included with the NYASM software. The REVISIONHISTORY files contain update information that may
not be included in this document.

* Interface
In-text Bold Characters Designates a button OK, Cancel.
Uppercase Characters in Angle Brackets: < > Delimiters for special keys. <TAB>, <ESC>.

* Microsoft Windows Manuals
This manual assumes that users are familiar with Microsoft Windows operating system. Many excellent

references exist for this software program, and should be consulted for general operation of Windows.

The Nyquest Internet Web Site

Nyquest provides on-line support on the Nyquest World Wide Web (WWW) site. The web site is used by
Nyquest as a means to make files and information easily available to customers. To view the site, the user

must have access to the Internet and a web browser, such as Microsoft® Internet Explorer®.

» Connecting to the Nyquest Internet Web Site
The Nyquest website is available by using your favorite Internet browser to attach to:

http://www.nyguest.com.tw

The website provides a variety of services. Users may download files for the latest Development Tools,

Data Sheets, Application Notes, User’s Guides, and Articles.

Other data available for consideration is:
* Latest Nyquest Press Releases.

* Product Information.

7 Ver. 5.6 2025/11/25

http://www.nyquest.com.tw/

(\) Nyquest NYASM User Manual

1.4 Development Systems Customer Notification Service

Nyquest provided the customer notification service to help our customers keep current on Nyquest
products with the least amount of effort. You will receive email notification whenever we change, update,

revise or have errata related to that product family or development tool.

1.5 Customer Support

Users of Nyquest products can receive assistance through several channels:
« Distributor or Representative.
* Field Application Engineer (FAE).

* Hot line.

Customers should call their distributor, representative, or field application engineer (FAE) for support.

8 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

2

NYASM Preview

NYASM Windows-based PC application provides a platform for developing assembly language code for

Nyquest’s microcontroller (MCU) families

Content:

21

2.2

23

2.1 System Requirements
2.2 What NYASM Does
2.3 Compatibility Issues

System Requirements

* Pentium 1.3GMHz CPU or above, Microsoft Windows operating system (7, 8, 10, 11).
* At least 1G of DRAM.

* At least 2G free space on hard disk.

« A display card and monitor with resolution of 1366x768 or higher.

* Microsoft .Net Framework 4.0 installed.

What NYASM Does

NYASM provides a universal solution for developing assembly code for all of Nyquest’'s 8-bit and 4-bit
micro-controllers. Notable features include:

* Al MCU Instruction Sets.

* Window Interfaces.

* Rich Directive Language.

Compatibility Issues

NYASM is compatible with all Nyquest development systems currently in production. This includes
Q-Code and NYIDE. NYASM supports a clean and consistent method of specifying radix (see Chapter 4).

You are encouraged to develop new code using the methods described within this document.

9 Ver. 5.6 2025/11/25

(\) Nyquest

NYASM User Manual

3 NYASM Installation and Getting Started

This chapter provides instructions for installation of NYASM on your system, and an overview of the assembler

(NYASM).

Content:

3.1 Installation

3.2 Overview of Assembler

3.3 Assembler Input/Output Files

3.1 Installation

Current version of NYASM is for Windows XP/7/8 version, NYASM.EXE has a Windows GUI interface.
NYASM.EXE may be used with Windows XP/7/8. You can obtain NYASM from our website or sales.
NYASM will be in a zip file.

To install:

* Create a directory in which to place the files.
* Unzip the NYASM files using either WinZip®.

3.2 Overview of Assembler

NYASM can be used to generate binary code that can be executed directly by a micro-controller. Binary

code is the default output from NYASM. This process is shown in Figure 3.1. When a source file is

assembled in this manner, all values used in the source file must be defined within that source file, or in

files that have been explicitly included. If assembly proceeds without errors, a BIN file will be generated,

containing the executable machine code for the target device. This file can then be used in conjunction

with a device programmer to program the micro-controller for function verification.

Figure 3.1: Generating binary code for function verification

R
v
CODE.ASM NYASM CODE.BIN Writer System MCU
— Demo
Board
v
10 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

3.3 Assembler Input/Output Files

These are the default file extensions used by NYASM and the associated utility functions.

Table 3.1: NYASM Default Extensions

Extension Purpose
Default source file extension input to NYASM:
ASM <source_name>.ASM
Default output extension for listing files generated by NYASM:
LT <source_name>.LST
ERR Output extension from NYASM for Warning/error files:

<source_name>.ERR

Output extension from NYASM for the machine code of an application program in binary
.BIN form:

<source_name>.BIN

HEX Output extension from NYASM for representing BIN file in hexadecimal form:
' <source_name>.HEX

Output extension from NYASM for the symbol and debug file. This file is created for
.DBG AMCIDE debug mode:

<source_name>.DBG

3.31

Source Code Format (.ASM)

The source code file may be created using any ASCII text file editor. It should conform to the following
basic guidelines. Each line of the source file may contain up to four types of information:

* labels

* mnemonics

* operands

. comments

The order and position of these are important. Labels must start in the first non-blank position of a line.
Mnemonics may start in the first non-blank position of a line, or follow a label. Operands follow the
mnemonic. Comments may follow the operands, mnemonics or labels. The maximum column width is
255 characters. A colon must separate the label and the mnemonic, one or more spaces, or tabs must
separate the mnemonic and its operand(s). Multiple operands must be separated by a comma. For

example:

1 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

3.3.1.1

3.3.1.2

3.31.3

3.3.14

For example:
Sample NYASM Source Code (Shows multiple operands)
; sample NYQUEST assembler source code

list p=ny5c640b , c=off ,r=hex

ORG_OFF equ 0x30

ORG_SUBOFF equ 0x00

SUBPPTRADDR equ ORG_SUBOFF+ORG_OFF
#include "2102.h"

org 0x10

mvma 0x20

jmp start

org 0x30

start:

mvma 0x30
mvat 0x12

end

Labels

A label must start in the first non-blank position of a line. It must be followed by a colon (:). Labels
must begin with an alphabetic character or an under bar (_) and may contain alphanumeric
characters, the under bar and the ‘@’ symbol. By default they are case insensitive, but case

sensitivity may be enabled through the command option of NYASM.

Mnemonics

Assembler instruction mnemonics, assembler directives and macro calls can begin in any column. If
there is a label on the same line, instructions must be separated from that label by a colon, or by one

or more spaces or tabs.

Operands

Operands must be separated from mnemonics by one or more spaces, or tabs. Multiple operands

must be separated by commas.

Comments

NYASM treats anything after a semicolon as a comment. All characters following the semicolon are

ignored through the end of the line.

12 Ver. 5.6 2025/11/25

(\) Nyquest

NYASM User Manual

3.3.2 Listing File Format (.LST)

For example:

Sample NYASM Listing File (.LST)
Nyquest Technology Co., Ltd.

NYASM 1.00 Copyright(c) Nyquest Technology Co., Ltd. [Build:Dec 20 2007]

File=E:\MyProjects\Build\asm\NYASM\Sample\NYASMSample.asm

Date=2007/12/20, 06:22:21 pm

ADDR

000010
000011

000030
000031

OPCODE/VALUE LINE

000000030
000000000
000000030

000000010
D020
6030
000000030
000000030
D030
0112

0-0001
0-0002
0-0003
0-0004
0-0005
0-0006
0-0007
1-0001
0-0008
0-0009
0-0010
0-0011
0-0012
0-0013
0-0014
0-0015

TAG SOURCE STATEMENT PAGE:1

; sample NYQUEST assembler source cod

list p=ny5c640b , c=off ,r=hex

ORG_OFF equ 0x30

ORG_SUBOFF equ 0x00

SUBPPTRADDR equ ORG_SUBOFF+ORG_OFF
#include "2102.h"

org 0x10
mvma 0x20
jmp start
org 0x30
start:

mvma 0x30
mvat 0x12

end

NYASM 1.00 Copyright(c) Nyquest Technology Co., Ltd. [Build:Dec 20 2007]

File=E:\MyProjects\Build\asm\NYASM\Sample\NYASMSample.asm
Date=2007/12/20, 06:22:21 pm
SYMBOL TABLE
__NY5C640B
ORG_OFF
ORG_SUBOFF

Start

SUBPPTRADDR

TYPE
Constant
Constant
Constant
Label

Constant

VALUE PAGE:2
00000001
00000030
00000000
00000030
00000030

13 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

3.3.3

3.34

3.3.5

SOURCE FILE TABLE
000 E:\MyProjects\Build\asm\NYASM\Sample\NYASMSample.asm
001 E:\MyProjects\Build\asm\NYASM\Sample\2102.h

PROCESSOR = NY5C640B (4 bits)

PROGRAM ROM =0x00000000 - OxO00FFFFF
DATA ROM = 0x00000000 - 0x000FFFFF
SRAM / SFR = 0x00000000 - 0x000000FF

The listing file format produced by NYASM is straightforward:

The product name and version, the assembly date and time, and the page number appear at the top
of every page. The first column of numbers contains the base address in memory where the code will
be placed. The second column displays the 32-bit value of any symbols created with the EQU,
VARIABLE, CONSTANT, or CBLOCK directives. The third column is reserved for the machine
instruction. This is the code that will be executed by the Nyquest MCU. The fourth column lists the
associated source file line number for this line. The remainder of the line is reserved for the source
code line that generated the machine code. Errors, warnings, and messages are embedded between
the source lines, and pertain to the following source line. The symbol table lists all symbols defined in

the program.

Error File Format (.ERR)

NYASM by default generates an error file. This file can be useful when debugging your code. The

format of the messages in the error file is:

[<type>] <file> (<line>) <number> <description>
For example:
[Error] C:\PROG.ASM 7 (133) w001: Symbol not previously defined (start).

Appendix B describes the error messages generated by NYASM.

Hex File Formats (.HEX)

NYASM is capable of producing different hex file formats.

Symbol and Debug File Format (.DBG)

When NYASM is evoked by NYIDE, it produces a DBG file for use in ICE debugging of code.

14 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

4 Using NYASM with Windows

This chapter is dedicated to describing the version of NYASM for Windows. This version may be run

stand-alone, or within other Nyquest development tools. e.g. Q-Code and NYIDE.

4.1

User Interface

NYASM for Windows provides a graphical interface for setting assembler options. It is invoked by

executing NYASM.EXE while in Windows.

Figure 4.1: NYASM Windows User Interface

MCU Assembler

Nyquest Technology

File:

File Status Add

Processor: Auto - Checkl._.lpdate] [History] [About

Select a source file by dragging it into the window or using the Add button. Set the various options as

described below. Then click Build to assemble the source file.

Note: When NYASM for Windows is invoked through other Nyquest development tools, the options

screen is not available. Options are passed from specific tools in the form of arguments.

Table 4.1: Assembler Options

Option Usage

Processor Override any source file processor settings. Please refer to A.2 MCU List.

15 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

4.2 Introduction

NYASM provides Ul with graphics and text mode. User can call NYASM in text mode by command script
and then make execution automation. The executable file of user interface is NYASM.exe of installation

directory. The available parameters are listed below.

Table 4.2: Available options

Option Usage
/o=<file> Import the specified asm file
/p=<icbody> Replace the source file processor settings. Please refer to A.2 MCU List.
[f=<file> Specify hardware configuration block file.
/bypass By pass graphic interface. End program after completing configuration.
/unlockrsvmem Allow the programming right in reserved memory area.
/nocfgblk Ignore the assembly time check for the existence of configuration block file

16 Ver. 5.6 2025/11/25

(\) Nyquest

NYASM User Manual

5

Directive Language

This chapter describes the NYASM directive language. Directives are assembler commands that appear in the

source code but are not translated directly into opcodes. They are used to control the assembler: its input,

output, and data allocation.

5.1 Highlights

There are five basic types of directives provided by NYASM:

« Control Directives — Control directives permit sections of conditionally assembled code.

» Data Directives — Data Directives are those that control the allocation of memory and provide a way to

refer to data items symbolically, that is, by meaningful names.

« Listing Directives — Listing Directives are those directives that control the NYASM listing file format. They

allow the specification of titles, pagination, and other listing control.

* Macro Directives — These directives control the execution and data allocation within macro body

definitions.

5.2 NY4,NY5, NY7, NY8A, NY9

5.21 Directive Summary

Table 5.1 contains a summary of directives supported by NYASM. The remainder of this chapter is

dedicated to providing a detailed description of the directives supported by NYASM.

Table 5.1: Directive Summary

Directive Description Syntax

Escape from a FOR, WHILE or
BREAK REPEAT-UNTIL loop, or Jump to the | break [<Boolean expression>]
end of a SWITCH block.
itch < ion>
CASE Part of a SWITCH block; must use Swé:se f:f r(ra::sl,ci):n 1>[,<expression 2>]
CASE with SWITCH. P "SeXp
<statements>
CBLOCK | Define a block of constants. cblock [<expr>]
tant
CONSTANT | Declare symbol constant. constan
<label>[=<expr>,...,<label>[=<expr>]]
Jump to the begin of FOR, WHILE or
REPEAT-UNTIL loop that contains
CONTINUE directive.
CONTINUE rective continue [<Boolean expression>]

All statements behind CONTINUE in a
loop are ignored.
Part of a SWITCH block; must use default

DEFAULT | DEFAULT with SWITCH. <statements>
Begin default assembly block to

17

Ver. 5.6 2025/11/25

(\) Nyquest

NYASM User Manual

Directive Description Syntax
SWITCH.
#DEFINE | Define a text substitution label. Zjﬁ:::g ::::2: E;f;fi],q@ﬂ
DW Declare data of one word. [<label>] dw <expr>[,<expr>,...,<expr>]
DWS Encode Text as 16-bit Data [<label>:] dws “<string>"
ELSE Eli?:rtiltlir.naﬁve esemey else<statements>
END End program block. end
ENDC End an automatic constant block. endc
ENDFOR End a FOR loop. endfor
ENDIF End conditional assembly block. endif
ENDM End a macro definition. endm
Directive for coding convenience:
ENDS presenting ENDFOR, ENDW, ends
ENDSW, ENDIF.
ENDSW Elr;ik.conmhonal switching assembly endsw
ENDW End a WHILE loop. endw
EQU Define an assemble constant. <label> equ <expr>
ERROR Issue an error message. error "<text_string>"
EXITM Exit from a macro. exitm
EXPAND Expand macro listing. expand
EXTERN External symbol. extern <label>
FOR Perform counting loop FOR. ioerX;irtse:tOD = <expr1> to <expr2> [step
I E;ilkn_ conditionally assembled code if <expr>
IFDEF Execute if symbol has been defined. ifdef <label>
IENDEE 5::,::: If symbol has not been ifndef <label>
#INCLUDATA| Include binary data file. #includata "<data_file>" [,<address>]
#INCLUDE | Include additional source file. #include "<include_file>"
LINES Re-declare line-per-page. lines <value>
LIST Listing options. list [<list_option>,...,<list_option>]
LOCAL Declare local macro variable. local <label>[,<label>]
MACRO Declare macro definition. <label> macro [<arg>,...,<arg>]
MAXMACRO | Setup t'he maximum depth of macro Maxmacrodepth [=] <expr>
DEPTH expansion.
MESSG Create user defined message. messg "<message_text>"

18

Ver. 5.6 2025/11/25

(\) Nyquest

NYASM User Manual

5.2.2

Directive Description Syntax
NEWPAGE | Re-declare line-per-page. Newpage <value>
NOEXPAND | Turn off macro expansion. noexpand

ORG Set program origin. [<label>:] org <expr>
ORGALIGN | Set program origin with alignment. [<label>:] orgalign <expr>, <align>
RADIX Specify default radix. radix <default_radix>
Repeat
REPEAT Begin at-least-one-time loop. <statements>
until <Boolean expression>
SUBTITLE | Specify program subtitle. subtitle "<sub_text>"
SWITCH Begin conditional switching assembly switch <expr>
block.
TITLE Specify program title. title "<title_text>"
#UNDEFINE | Delete a substitution label. #undefine <label>
. . . Repeat
UNTIL Fnd at-least-one-time loop if condition <statements>
is true. . .
until <Boolean expression>
VARIABLE | Declare symbol variable. variable
<label>[=<expr>,...,<label>[=<expr>]]
WHILE Perform loop WHILE condition is true. | while <expr>
ALIGN2 Align the starting address of the align2 <expr>, <bit>
program.

BREAK — Jump Out Point in a Logic Block

4 Syntax

Syntax 1:

<for|while|repeat — loop begin>

[<statements>]

break [<Boolean expr>]

[<statements>]

<for|while|repeat — loop end>

Syntax 2:

switch <expr>

case <expr1>[,<expr2>]

[<statements>]

break [<Boolean expr>]

[<statements>]

[<case-statements>]

Endsw

19

Ver. 5.6 2025/11/25

(\) Nyquest

NYASM User Manual

¢ Description

Set the logical point in a program which will escape the running flow from a WHILE, FOR, or

REPEAT-UNIT loop. break also is used in switch block to achieve the purpose of switching

among conditional branches.

¢ Example
Example 1:
fori=0to 4
nop
break i==
halt
endfor
Example 2:
a=1
switch a
case 1,2
nop
break
case 1
halt

endsw

¢ See Also

FOR, WHILE, REPEAT, SWITCH

5.2.3 CASE - Define an Option Item of SWITCH

4 Syntax

switch <expr>

case <expr1>[,<expr2>]

[<statements>]

default
[<statements>]

endsw

€ Description

Define an option of selection statement. Once the <exprN> matched one of the conditions after

case, running flow will branch into that case item. case is part of a switch block, and must be

used with switch.

20

Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

¢ Example

a=1

switch a
case 1,2
nop
break
case 1
halt

endsw

¢ See Also
DEFAULT, SWITCH

5.2.4 CBLOCK - Define a Block of Constants

4 Syntax
cblock [<expr>]
[<label>[=<increment>][,<label>[=<increment>]]]

endc

¢ Description
Define a list of named constants. Each <label> is assigned a value of one higher than the
previous <label>. The purpose of this directive is to assign address offsets to many labels. The
list of names end when an ENDC directive is encountered. <expr> indicates the starting value for
the first name in the block. If no expression is found, the first name will receive a value one higher
than the final name in the previous CBLOCK. If the first CBLOCK in the source file has no <expr>,
assigned values start with zero. If <increment> is specified, then the next <label> is assigned the
value of <increment> higher than the previous <label>. Multiple names may be given on a line,

separated by commas. cblock is useful for defining constants in program and data memory.

¢ Example
cblock 0x20 ; name_1 will be assigned 20
name_1, name_2 ; name_2 is 21

name_3 =0x30, name_4 ; name_4 is assigned 30,name_4 is assigned 31.

endc

4 See Also
ENDC

5.2.5 CONSTANT - Declare Symbol Constant

4 Syntax

constant <label>=<expr> [...,<label>=<expr>]

21 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

¢ Description

Creates symbols for use in NYASM expressions. Constants may not be reset after having once
been initialized, and the expression must be fully resolvable at the time of the assignment. This is
the principal difference between symbols declared as CONSTANT and those declared as

VARIABLE. Otherwise, constants and variables may be used interchangeably in expressions.

¢ Example
variable RecLength=64 ; Set Default RecLength
constant BufLength=512 ; Init BufLength

; RecLength may
; be reset later
; in RecLength=128
constant MaxMem=RecLength+BufLength ;CalcMaxMem
€ See Also
VARIABLE

5.2.6 CONTINUE - Ignore Statements Afterward and Start Next Loop

4 Syntax
<for|while|repeat — loop begin>
[<statements>]
continue [<Boolean expr>]
[<statements>]
<for|while|repeat — loop end>
¢ Description
Set a logical point in a program which will ignore statements after continue in WHILE, FOR, or
REPEAT-UNITL looping block, and jump to the begin of looping block containing continue

directive.

¢ Example
fori=0Oto 4
nop
continue i==
halt

endfor

¢ See Also
FOR, WHILE, REPEAT

22 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

5.2.7 DEFAULT - Define an Unconditional Item of SWITCH

4 Syntax
switch <expr>
case <expri1>[,<expr2>]

[<statements>]

default
[<statements>]

endsw

€ Description
Define an unconditional item of selection statement. Once no condition after case items matched
<expr>, running flow will go into default item. default is part of a switch block, and must be used

with switch.

¢ Example

a=1

switch a

case 1, 2
nop
break
case 1
halt
default

nop

endsw

¢ See Also
CASE, SWITCH

5.2.8 #DEFINE — Define a Text Substitution Label

4 Syntax
#define <name> [<string>]

€ Description
This directive defines a text substitution string. Wherever <name> is encountered in the
assembly code, <string> will be substituted. Using the directive with no <string> causes a

definition of <name> to be noted internally and may be tested for using the IFDEF directive.

¢ Example
#define length 20

23 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

5.2.9

5.2.10

5.2.11

*

#define control 0x19, 7

srbr control ; set bit 7 in 0x19

See Also
#UNDEFINE, IFDEF, IFNDEF

DW - Declare Data of One Word

*

Syntax

[<label>:] dw <expr>[,<expr>,...,<expr>]

Description
Reserve program memory words for data, initializing that space to specific values. Values are
stored into successive memory locations and the location counter is incremented by one.

Expressions may be literal strings and are stored as described in the DATA directive.

Example
dw 39, (d_list*2+d_offset)
dw diagbase-1

DWS - Encode Text as 16-bit Data

*

Syntax

[<label>:] dws “<string>"

Descriptions

Reserve a block of program memory for text data. Characters are grouped in pairs and stored in
16-bit ROM using little-endian format. Unlike DW, which stores each character separately, DWS
encodes two characters together as one 16-bit entry.

This command is supported only on 16-bit ICs.

This command is is available starting from NYASM 2.80.

Example
dws “abcdeAB”
;; ROM -> 6261 6463 4165 0042

ELSE - Begin Alternative Assembly Block to IF

*

*

Syntax

else

Description

Used in conjunction with an IF directive to provide an alternative code block should the IF

24 Ver. 5.6 2025/11/25

(\) Nyquest

NYASM User Manual

5.2.12

5.2.13

5.2.14

evaluate to false. ELSE may be used inside a regular program block or macro.

Example
speed macro rate
if rate < 50
dw slow
else
dw fast
endif

endm

See Also
ENDIF, IF

END - End Program Block

L 4

*

Syntax
end
Description
Indicates the end of the program.
Example
list p= ny4b095a
; executable code

end ; end of instructions

ENDC - End an Automatic Constant Block

L 4

*

*

Syntax

endc

Description

ENDC terminates the end of a CBLOCK list. It must be supplied to terminate the list.

See Also
CBLOCK

ENDFOR - End a For Loop

L 4

*

Syntax

endfor

Description

ENDFOR terminates a FOR loop. As long as the looping counter specified by the FOR directive

25

Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

5.2.15

5.2.16

5.2.17

went over the conditional boundary, the source code between the FOR directive and the
ENDFOR directive will be repeatedly expanded in the assembly source code stream. This
directive may be used inside a regular program block or macro.

¢ See Also
FOR

ENDIF - End Conditional Assembly Block

4 Syntax
endif

¢ Description
This directive marks the end of a conditional assembly block. ENDIF may be used inside a
regular program block or macro.

€ See Also
ELSE, IF

ENDM - End a Macro Definition

4 Syntax
endm
¢ Description
Terminates a macro definition begun with MACRO.
¢ Example
make_table macro arg1, arg2
dwarg1,0 ; null terminate table name
res arg2 ; reserve storage
endm
€ See Also
MACRO, EXITM

ENDS - Coding Convenience
4 Syntax
ends

¢ Description
Present ENDFOR, ENDW, ENDSW, ENDIF

€ See Also
ENDFOR, ENDW, ENDSW, ENDIF

26 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

5.2.18 ENDSW - End a Switch Block

5.2.19

5.2.20

5.2.21

L 4

*

Syntax

endsw

Description
Terminates a SWITCH block definition begun with SWITCH.

Example
See the example for SWITCH

See Also
SWITCH

ENDW - End a While Loop

*

*

Syntax

endw

Description

ENDW terminates a WHILE loop. As long as the condition specified by the WHILE directive
remains true, the source code between the WHILE directive and the ENDW directive will be
repeatedly expanded in the assembly source code stream. This directive may be used inside a

regular program block or macro.

Example

See the example for WHILE

See Also
WHILE

EQU - Define an Assembler Constant

L 4

*

*

Syntax

<label> equ <expr>

Description

The value of <expr> is assigned to <label>.

Example

four equ 4 ; assigned the numeric value of 4 to label four

ERROR - Issue an Error Message

L 4

*

Syntax

error "<text_string>"

Description

27 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

5.2.22

5.2.23

<text_string> is printed in a format identical to any NYASM error message. <text_string> may be

from 1 to 80 characters.

Example

error_checking macro arg1
if arg1 >= 55 ; if arg is out of range
error "error_checking-01 arg out of range"
endif

endm

See Also
MESSG

EXITM - Exit from a Macro

L 4

*

Syntax

exitm

Description
Force immediate return from macro expansion during assembly. The effect is the same as if an

ENDM directive had been encountered. This directive can only be used in NY5+ and NY6.

Example
test macro filereg
if filereg == 1 ; check for valid file
exitm
else
error "bad file assignment"
endif

endm

See Also
ENDM MACRO

EXPAND - Expand Macro Listing

*

*

Syntax

expand

Description

Expand all macros in the listing file. This directive is roughly equivalent to the “Macro Expansion”
assembler option, but may be disabled by the occurrence of a subsequent NOEXPAND.

See Also
MACRO, NOEXPAND

28 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

5.2.24 EXTERN - External Symbol

5.2.25

5.2.26

L 4

*

Syntax

extern <label>

Description
Define the symbol as a public symbol when it needs to be accessed across different modules.
This is required when, for example, two independently compiled assembly files call functions

defined in each other. This feature is only available in NY8 C language projects.

FOR - Perform For Loop While Iterator Meets the Condition

*

Syntax

for <iterator>=<expr1> to <expr2> [step <expr3>]

endfor

Description
The lines between the FOR and the ENDFOR are assembled as long as <iterator> evaluates in

the range of <expr1> to <expr2>. A FOR loop can be repeated a maximum of 256 times.

Example
for1=0to 5
nop

endfor

See Also
ENDFOR

IF — Begin Conditionally Assembled Code Block

L 4

*

*

Syntax

if <expr>

Description

Begin execution of a conditional assembly block. If <expr> evaluates to true, the code
immediately following the IF will assemble. Otherwise, subsequent code is skipped until an ELSE
directive or an ENDIF directive is encountered. An expression that evaluates to zero is
considered logically FALSE. An expression that evaluates to any other value is considered
logically TRUE. The IF and WHILE directives operate on the logical value of an expression. A

relational TRUE expression is guaranteed to return a nonzero value, FALSE a value of zero.

Example

29 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

5.2.27

5.2.28

if version == 100; check current version
;executable cod
;executable cod
else
;executable cod
;executable cod
endif

See Also
ELSE, ENDIF

IFDEF — Execute If Symbol has Been Defined

*

*

Syntax

ifdef <label>

Description
If <label> has been previously defined, usually by issuing a #DEFINE directive or by setting the
value on the NYASM command line, the conditional path is taken. Assembly will continue until a

matching ELSE or ENDIF directive is encountered.

Example

#define testing 1 ; set testing "on"

ifdef testing
<execute test code> ; this path would be executed.
Endif

See Also
#DEFINE, ELSE, ENDIF, IFNDEF, #UNDEFINE

IFNDEF — Execute If Symbol has not Been Defined

L 4

*

Syntax

ifndef <label>

Description

If <label> has not been previously defined, or has been undefined by issuing an #UNDEFINE
directive, then the code following the directive will be assembled. Assembly will be enabled or

disabled until the next matching ELSE or ENDIF directive is encountered.

Example

30 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

5.2.29

5.2.30

#define testing1 ; set testing on

#undefine testing1 ; set testing off
ifndef testing ; if not in testing mode

; execute this path

endif

end ; end of source

See Also
#DEFINE, ELSE, ENDIF, IFDEF, #UNDEFINE

#INCLUDATA - Include Binary Data File

*

*

Syntax

#includata "<binary_data_file>"[, address]

Description

The specified file is read in as binary data. The effect is the same as if the entire text of the
included file were inserted into the file at the location of the #includata statement. If the includes
data file needs to be inserted at a specific location, users can specify the location by address.
#includata must be the last statement before end directive. <binary_data_file> must be enclosed
in quotes. If a fully qualified path is specified, only that path will be searched. Otherwise, the

search path is: source file directory. <binary_data_file> will becomes a label after assembled.

Example

#includata "c:\music\s02.sog", 0x2000 ; insert data file at 0x2000

#INCLUDE - Include Additional Source File

*

*

Syntax

#include "<include_file>"

Description

The specified file is read in as source code. The effect is the same as if the entire text of the
included file were inserted into the file at the location of the include statement. Upon end-of-file,
source code assembly will resume from the original source file. <include_file> must be enclosed
in quotes. If a fully qualified path is specified, only that path will be searched. Otherwise, the

search path is: source file directory.
Example
#include "c:\sys\sysdefs.inc" ; system defs

#include “regs.h” ; register defs

31 Ver. 5.6 2025/11/25

(\) Nyquest

NYASM User Manual

5.2.31 LINES - Reset Line Count per Listing Page

4 Syntax

lines <value>

¢ Description

Set the maximum line count per page when generating listing file.

€ See Also

NEWPAGE

5.2.32 LIST - Listing Options

4 Syntax

list [<list_option>, ..

¢ Description

., <list_option>]

Occurring on a line by itself, the LIST directive has the effect of turning listing output on, if it had

been previously turned off. Otherwise, one of the following list options can be supplied to control

the assembly process or format the listing file:

Table 5.2: List Directive Options

OPTION | DEFAULT DESCRIPTION
Enable/Disable case sensitivity
c Off c=on Enable
c=off Disable
Set the processor type:
/p=<processor_type>
p None P=<p VP . .
where <processor_type> is an Nyquest MCU device. For example,
NY5A005A.
/unlockrsvmem
unlockrsv . . Co
mem Locked For 4-bit MCU only. Allow the programming right in reserved memory
area.
Configuration| /nocfgblk
nocfgblk Block For 4-bit MCU only. Ignore the assembly time check for the existence
required of configuration block file.
¢ Example

list p=ny5c640b, c = off

5.2.33 LOCAL - Declare Local Macro Variable

4 Syntax

local <label>[,<label>...]

32 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

5.2.34

L 4

Description

Declares that the specified data elements are to be considered in local context to the macro.
<label> may be identical to another label declared outside the macro definition; there will be no
conflict between the two. If the macro is called recursively, each invocation will have its own local
copy.

Example

<main code segment>

len equ 10 ; global version
size equ 20 ; note that a local variable may now be created and modified
test macro size

local len, label ; local len and label

len set size ; modify local len

label res len ; reserve buffer

len set len-20 ;

endm ; end macro

See Also
ENDM, MACRO

MACRO - Declare Macro Definition

L 4

Syntax

<label> macro [<arg>, ..., <arg>]

Description
A macro is a sequence of instructions that can be inserted in the assembly source code by using
a single macro call. The macro must first be defined, then it can be referred to in subsequent

source code. A macro can call another macro, or may call itself recursively.

Example

Read macro device, buffer, count
mvma device

mvma buffer

mvma count

endm

read 1,2,3
See Also
ELSE, ENDIF, ENDM, EXITM, IF, LOCAL

33 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

5.2.35 MAXMACRODEPTH - Define Maximum Macro Depth

5.2.36

5.2.37

L 4

*

Syntax

maxmacrodepth[=]<expr>

Description
MAXMACODEPTH defines the maximum valid macro depth to <expr>. <expr> must be less than
or equal to the maximum depth 256. MAXMACODEPTH can be used more than once in a source

file. Each use redefines the maximum valid macro depth.
Example
list p=ny5c640b

maxmacrodepth 0x10

MESSG - Create User Defined Message

L 4

*

Syntax

messg "<message_text>"

Description
Causes an informational message to be printed in the listing file. Issuing a MESSG directive does

not set any error return codes.

Example
mssg_macro macro
messg "mssg_macro-001 invoked without argument”

endm

See Also
ERROR

NEWPAGE - Insert Listing Page Eject

*

*

Syntax

newpage <value>

Description

Inserts a page eject into the listing file.

See Also
LINE

34 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

5.2.38 NOEXPAND - Turn off Macro Expansion

4 Syntax

noexpand

¢ Description

Turns off macro expansion in the listing file.

€ See Also
EXPAND

5.2.39 ORG - Set Program Origin

4 Syntax
[<label>:] org <expr>
¢ Description
Set the program origin for subsequent code at the address defined in <expr>. If <label> is
specified, it will be given the value of the <expr>. If no ORG is specified, code generation will
begin at address zero.
¢ Example
int_1: org 0x20
; Vector 20 code goes here
int_2: org int_1+0x10

; Vector 30 code goes here

5.2.40 ORGALIGN - Set Program Origin With Address Alignment

4 Syntax
[<label>:] orgalign <expr>,<align>

¢ Description
Set the program origin for subsequent code at the address defined in <expr>|<align>. If <label>
is specified, it will be given the value of the <expr>|<align>. If no ORGALIGN is specified, code

generation will begin at address zero.

¢ Example
int_1: orgalign 0x20,0x7

¢ See Also
.align2

5.2.41 RADIX - Specify Default Radix

€4 Syntax

radix <default_radix>

35 Ver. 5.6 2025/11/25

(\) Nyquest

NYASM User Manual

5.2.42

5.2.43

L 4

Description

Sets the default radix for data expressions. The default radix is dec. Valid radix values are: hex,

dec, oct, or bin.

Example

radix dec

See Also
LIST

REPEAT - Begin a Repeat-Until Loop Block Definition

L 4

Syntax

repeat

until <expr>

Description

Begin a REPEAT-UNTIL block definition.

Example
test_mac macro count
variable i
i=0
repeat
i+=1
until i > count

endm

End

See Also
WHILE, UNTIL

SUBTITLE - Specify Program Subtitle

*

*

Syntax

subtitle "<sub_text>"

Description

<sub_text> is an ASCII string enclosed in double quotes, 60 characters or less in length. This

directive establishes a second program header line for use as a subtitle in the listing output.

Example

36

Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

subtitle "diagnostic section"

¢ See Also
TITLE

5.2.44 SWITCH - Begin Conditional Switching Assembly Block

4 Syntax
switch <expr>
case <expri1>[,<expr2>]
[<statements>]

case < exprM>[,<exprN>]

default
[<statements>]

endsw

€ Description
Begin execution of a conditional switching assembly block. If <expr> evaluates to matching any
<exprX> after cases , the code immediately following that matched case will assemble.
Otherwise, subsequent code is skipped until a default directive or an ENDSW directive is

encountered.

¢ Example

a=1

switch a
case 1,2
nop
break
case 1
halt
default

endsw

¢ See Also
BREAK, DEFAULT

5.2.45 TITLE - Specify Program Title

4 Syntax

title "<title_text>"

¢ Description

37 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

5.2.46

5.2.47

<title_text> is a printable ASCII string enclosed in double quotes. It must be 60 characters or less.

This directive establishes the text to be used in the top line of each page in the listing file.

Example

title "operational code, rev 5.0"

See Also
SUBTITLE

#UNDEFINE - Delete a Substitution Label

L 4

*

Syntax

#undefine <label>

Description

<label> is an identifier previously defined with the #DEFINE directive. It must be a valid NYASM
label. The symbol named is removed from the symbol table.

Example
#define length 20

#undefine length
See Also
#DEFINE, IFDEF, #INCLUDE, IFNDEF

UNTIL — Perform Loop Until Condition is True

*

Syntax

repeat

until <expr>

Description
The lines between the REPEAT and the UNTIL are assembled at least once, and as long as

<expr> evaluates to FALSE. A REPEAT loop can be repeated at maximum of 256 times.

Example
test_mac macro count
variable i
i=0
repeat
i+=1

until i < count

38 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

5.2.48

5.2.49

*

endm

end

See Also
WHILE, REPEAT

VARIABLE - Declare Symbol Variable

*

*

*

Syntax

variable <label>[=<expr>][,<label>[=<expr>]...]

Description
Creates symbols for use in NYASM expressions. Variables and constants may be used
interchangeably in expressions. Note that variable values cannot be updated within an operand.

You must place variable assignments, increments, and decrements on separate lines.

Example

Please refer to the example given for the CONSTANT directive.

See Also
CONSTANT

WHILE - Perform Loop While Condition is True

L 4

Syntax

while <expr>

endw

Description

The lines between the WHILE and the ENDW are assembled as long as <expr> evaluates to
TRUE. An expression that evaluates to zero is considered logically FALSE. An expression that
evaluates to any other value is considered logically TRUE. A relational TRUE expression is
guaranteed to return a non-zero value; FALSE a value of zero. A WHILE loop can contain at

most 100 lines and be repeated a maximum of 256 times.

Example

test_mac macro count
variable i

i=0

while i < count

movlw i

39 Ver. 5.6 2025/11/25

(\) Nyquest

NYASM User Manual

i+=1
endw
endm

start

test mac 5

end

€ See Also
ENDW IF

5.2.50 .ALIGN2 - AlignThe Staring Address of Program

4 Syntax

.align2 <expr>, <bit>

¢ Description

Align the starting address of program with <bit>, the low bit of address is <expr>.

When the demand addresses are 0x41, 0x141, 0x241, 0x341, and so on, user could use .align2

to align the 8 bits, and set the low bit as 0x41. But the ORGALIGN command cannot specify the

number of bit, OxC1will still be generated.

This command only be supported nu NY5+ and NY6

¢ Example

.align2 0x41, 8

¢ See Also

ORGALIGN

5.3 NYS8L

The directives for NY8L are different from other IC series. The following are the descriptions of directives.

5.3.1 Directive Summary

Table 5.3 contains a summary of directives supported by NYASM. The remainder of this chapter is

dedicated to providing a detailed description of the directives supported by NYASM.

Table 5.3: Directive summary

Directive

Description

Syntax

.and

Boolean and operation

<expr> .and <expr>

.bankbyte

Access bank byte

.bankbyte(<expr>)

40

Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

Directive Description Syntax
.bitand Bit and operation <expr> .bitand <expr>
.bitnot Bit not operation .bitnot <expr>

.bitor Bit or operation <expr> .bitor <expr>
.bitxor Bit xor operation <expr> .bitxor <expr>
.blank Check blank symbol .blank(<symbol>)

.byte Low byte .byte(<expr>)

.ceil Unconditional carry .ceil(<expr>)

.code The abbreviation of .segment “code” .code
.data The abbreviation of .segment “data” .data
.define Definition .define <symbol> <expr>

.defined Check whether the symbol is defined .defined(<symbol>)
.else Begin alternative assembly block to IF .else

Begin alternative assembly block after IF and the
.elseif .elseif(<expr>)
specified condition is true

.endif End conditional assembly block .endif
.endmacro |End macro defined block .endmacro
.endrepeat [End the repeating scope .endrepeat
.endscope |End variable scope .endscope
.endstruct |End structure block .endstruct
.equ Define constant <symbol> .equ <expr>
.error Issue an compilation error message .error “<text>”
.export Export symbol .export <symbol>
.exportzp Export zero page symbol .exportzp <symbol>
.extern Declare external symbol .extern <symbol>
.externzp |Declare global zero page symbol .externzp <symbol>
.floor Uncoditional round down floor(<expr>)

41 Ver. 5.6 2025/11/25

(\) Nyquest

NYASM User Manual

Directive Description Syntax
.hibyte High byte .hibyte(<expr>)
Wif Conditional assembly .if(<expr>)
.ifblank Conditional assembly if parameter is blank .ifblank(<symbol>)
.ifdef Conditional assembly If defined .ifdef(<symbol>)
ifnblank [Conditional assembly If parameter isn’t blank .ifnblank(<symbol>)
.ifndef Conditional assembly If undefined .ifndef(<symbol>)
.import Import symbol .import <symbol>
.importzp |Import zero page symbol .importzp <symbol>
.incbin Insert binary file .incbin “<file>"
.include Include file .include “<file>"
lobyte Low byte .lobyte(<expr>)
local Declare local macro variable local <symbol>
.macro Define macro .macro <name> <arg1>, <arg2>, ...
mod Remainder operation <expr>.mod <expr>
.not Boolean reverse operation .not <expr>
.or Boolean or operation <expr> .or <expr>
.org Set program origin .org <expr>
.repeat Begin a repeat-until loop block definition .repeat <expr>
res Reserve space .res <expr>, <expr>
.round Round .round(<expr>)
.scope Start variable scope .scope <symbol>
.segment |Program segment .segment “<symbol>"
.Setcpu Setup CPU .setcpu <ic_body>
.shi Left shift <expr> .shl <expr>
.shr Right shift <expr> .shr <expr>

42

Ver. 5.6 2025/11/25

(\) Nyquest

NYASM User Manual

5.3.2

5.3.3

5.3.4

5.3.5

Directive Description

Syntax

.string Access string

.string(<symbol>)

.word Word

.word <expr>

.Xor Boolean exclusive or

<expr> .xor <expr>

.And — Boolean AND Operation

*

*

Syntax
<symbol> = <expr1> .and <expr2>
Description
Calculate expr1 & expr2
Example
.if(0 .and 1)
.error

.endif

.BANKBYTE - Access Bank Byte

L 4

*

*

Syntax
.bankbyte(<expr>)

Description

Obtain bank byte (bit 16~23) of <expr> high byte.

Example
Label1_bank = .bankbyte(label1)

.BITAND - Bit AND Operation

L 4

*

Syntax

<symbol> = <expr1> .and <expr2>
Description

Calculate expr1 & expr2

Example

Ans =1 .bitand 3

;Ans =1

.BITNOT - Bit NOT Operation

*

Syntax

<symbol> = .not <expr>

43

Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

¢ Description

Reverse every bit of expr. The bit width is 32bit. If 0 is reversed the result will be 1 of 32bit.
¢ Example

Ans = .bitnot 3

; Ans = OXFFFFFFFC

5.3.6 .BITOR - Bit XOR Operation

4 Syntax

<symbol> = <expr1> .bitor <expr>
€ Description

Calculate expr1 exclusive or expr2
¢ Example

Ans = 3 .bitor 6

;Ans =7

5.3.7 .BITXOR - Bit XOR Operation

4 Syntax

<symbol> = <expr1> .xor <expr2>
€ Description

Calculate expr1 exclusive or with expr2
¢ Example

Ans =1 .xor 3

;Ans =2

5.3.8 .BLANK - Check Blank Symbol

4 Syntax
.blank(<symbol>)
€ Description
The returned Boolean value will indicate the parameter <symbol> is blank or not. It can be used
for checking the assigned parameter of caller if applied in macro.
¢ Example
.macro M1 arg1
.if (.blank(arg1))
.error
.endif

.endmacro

44 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

5.3.9 .BYTE - Low Byte

4 Syntax

<symbol> = .byte(<expr>)
¢ Description

Access the low byte of expr.
¢ Example

Ans = .byte(0x1234)

; Ans = 0x34

5.3.10 .CEIL - Unconditional Carry

4 Syntax

<symbol> = .ceil(<expr>)
€ Description

If <expr> is a float, it will be rounded upward to the nearest integer.
¢ Example

Ans = .ceil(1.2)

;Ans =2

5.3.11 .CODE - The abbreviation of .segment “code”

4 Syntax

.code
¢ Description

Equivalent to .segment “code”
€ SeeAlso

.SEGMENT

5.3.12 .DATA - The abbreviation of .segment “data”

4 Syntax
.data
€ Description
Equivalent to .segment “data”

4 See Also
SEGMENT

45 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

5.3.13 .DEFINE - Definition

5.3.14

L 4

*

Syntax

.define <symbol> <expr>

Description

Define an expression to symbol which make the symbol represented expression then.
Example

.define AAA1 + 2

Ans = AAA

;Ans =3

See Also

.DEFINED

.DEFINED - Check Whether the Symbol Is Defined

L 4

*

.

.

Syntax
.defined(<symbol>)
Description
If <symbol> has been defined, the outcome will be true(1) otherwise false(0). In general
conditions, use .ifdef <symbol> to check the defined symbols. However, if numbers of symbol
have to be checked if defined, a nested .ifdef is necessary. Instead, user can use .defined to
check multiple defined symbols, as below example:
.ifdef (symbol1)
.ifdef(symbol2)
<statements>

.endif
.endif
It can be rewritten:
.if (.defined(symbol1) && .defined(symbol2))

<statements>
.endif
Example
.if (.defined(def_name))

.error

; Because def_name symbol isn’t defined, the program won’t be assembled
.endif
See Also
.DEFINE

46 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

5.3.15 .ELSE - Begin Alternative Assembly Block to IF

4 Syntax
.if(<expr>)
<statements>
.else
<statements>

.endif

¢ Description
Used in conjunction with an IF directive to provide an alternative path of assembly code should

the IF evaluate to false. ELSE may be used inside a regular program block or macro.

¢ Example
if(0)
.error
.else
; do something

.endif

€ See Also
F, .ELSEIF

5.3.16 .ELSEIF —Begin Alternative Assembly Block After IF And The Specified Condition Is
True

4 Syntax
.if(<expr>)
<statements>
.else if (<expr>)
<statements>

.endif

€ Description

Assemble a program block if <expr> is true if the previous .if or .elseif evaluate to false.

¢ Example
TempVar = 1
.if(TempVar< 1)
.error
.elseif(TempVar < 2)
; do something

.endif

€ See Also

47 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

IF, .ELSE

5.3.17 .ENDIF - End Conditional Assembly Block

4 Syntax
.if(<expr>)
<statements>
.else if (<expr>)
<statements>
.endif
€ Description

End the conditional assembly block started by .iF.

¢ See Also
IF, .ELSE, ELSEIF

5.3.18 .ENDMACRO - End Macro Defined Block

€ Syntax
.macro <symbol> [<arg1> [,<arg2>...]]
<statements>
.endmacro
& Description
End the conditional assembly block started by .macro.
¢ SeeAlso

.macro

5.3.19 .ENDREPEAT - End the Repeating Scope

4 Syntax
.repeat <expr>
<statements>
.endrepeat
¢ Description
End the repeating block that .repeat starts off.
¢ See Also

.repeat

48 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

5.3.20 .ENDSCOPE - End Variable Scope

4 Syntax
.scope <symbol>
<statements>
.endscope
¢ Description

End the repeating scope that .repeat starts off.

¢ See Also

.scope

5.3.21 .ENDSTRUCT - End Structure Block

4 Syntax

.endstruct
€ Description
the repeating scope that . struct starts off.

€ See Also

.struct

5.3.22 .EQU - Define an Assembler Constant

4 Syntax
<symbol> .equ <expr>
¢ Description
Define an constant <symbol> and assignment <expr>. <expr> must be an constant that can be

calculated at this moment. When the constant is defined, it's value cannot be changed.

¢ Example
MylInteger .equ 1

5.3.23 .ERROR -Issue A Compilation Error Message

4 Syntax

.error [‘“<message>"]
€ Description

Generate an error message. The message should be quoted by a double quotation.
¢ Example

.error “argument out of range”

49 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

5.3.24 .EXPORT - Export Symbol

5.3.25

5.3.26

4 Syntax
.export <symbol>
€ Description
The effect is same with .extern. The directive is established as an alias for compatibility.

¢ See Also

.extern

.EXPORTZP - Export Zero Page Symbol

4 Syntax

.exportzp <symbol>
¢ Description

The effect is same with.externzp. The directive is established as an alias for compatibility.
¢ SeeAlso

.externzp

.EXTERN - Declare External Symbol

4 Syntax
.extern <symbol>

€ Description
Declare symbol as a global symbol. The external symbol can be defined by its module or called
from other module. When numbers of module is linked, the global symbols cannot named the
same name or un-assigned.

¢ Example

This directive is meaningful when modules are linked. The following are explanations of this

directives in 3 different files.

.ifndef HEADER_H
.define HEADER_H
.extern GLOBAL_LABEL
.endif

.include “header.h”
jmp GLOBAL_LABEL ;jump to module2

50 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

.include “header.h”
GLOBAL_LABEL:
nop
¢ See Also

.externzp

5.3.27 .EXTERNZP - Declare Global Zero Page Symbol

4 Syntax
.externzp <symbol>

€ Description
Declare symbol as a global symbol. When using this symbol, the zero page addressing mode
has high priority. While assigning a value, user must limit the value in the range of zero
page(0x00 ~ OxFF). The exceeded value could result in error. The .externzp is for ROM
addressing definition , the .extern is for global subroutine definition.

¢ SeeAlso

.extern

5.3.28 .FLOOR - Unconditional Round Down

4 Syntax
<symbol> = .floor(<expr>)
€ Description
If <expr> is a float, rounding down unconditionally.

¢ Example
Ans = .floor(1.2)

;Ans ==

5.3.29 .HIBYTE - High Byte

4 Syntax

<symbol> = .hibyte(<expr>)
¢ Description

Access a byte from high byte of expr. (bit 8~15)
¢ Example

Ans = .hibyte(0x1234)

;Ans == 0x12

51 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

5.3.30 .IF — Conditional Assembly

4 Syntax
.if(<expr>)
<statements>
.endif
¢ Description
If <expr> is true then assembles this block.
<expr> is Boolean type operation , for example, a==b.
¢ Example
Tmp=1+2*3
if(Tmp 1=7)
.error

.endif

5.3.31 .IFBLANK - Conditional Assembly If Parameter Is Blank

€ Syntax

.ifblank(<symbol>)

<statements>

.endif
€ Description

This directive is the abbreviation of .if(.blank(<symbol>))
¢ SeeAlso

.blank

5.3.32 .IFDEF - Conditional Assembly If Defined

4 Syntax
.ifdef(<symbol>)
<statements>

.endif

¢ Description
If <symbol> is defined, assembling this block.
¢ Example
.ifdef(UNDEFINE_SYM)
.error

.endif

¢ See Also

52 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

.if, .defined

5.3.33 .IFNBLANK - Conditional Assembly If Parameter Isn’t Blank

4 Syntax
.ifnblank(<symbol>)
<statements>
.endif
¢ Description
This directive is the abbreviation of .if(! .blank(<symbol>)).

¢ See Also
.blank

5.3.34 .IFNDEF - Conditional Assembly If Undefined

¢ Syntax
.ifndef(<symbol>)
<statements>
.endif

¢ Description
If <symbol> is undefined, assembling the block.

¢ Example

.ifdef(UNDEFINE_SYM)
.error
.endif

¢ See Also
.if, .defined

5.3.35 .IMPORT - Import Symbol
4 Syntax
.import <symbol>
€ Description
The effect is same with .extern. The directive is established as an alias for compatibility.

€ See Also

.extern

5.3.36 .IMPORTZP - Import Zero Page Symbol

€4 Syntax

.importzp <symbol>

53 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

¢ Description

The effect is same with .externzp. The directive is established as an alias for compatibility.

€ See Also

.externzp

5.3.37 .INCBIN - Insert Binary File

4 Syntax
.incbin “<file>”

¢ Description
Insert the content of <file> as binary data. The .include directly uses the content of target file,
whereas .include the target file as text data. The .incbin usually is applied for binary files such as

sound and graphic files.

¢ Example
L_RES Voice1:

.incbin “d:\abc\voice1.v8Ix”

5.3.38 .INCLUDE - Include File

4 Syntax
.include “<file>”

€ Description
The <file> must be another original assembily file.The assembler will stop assembling the current
file and starting to assemble the included <file>. When the assembly of include file finished, the

assembler will return to previous position of previous file.

¢ Example
-—-al.h----
.ifndef A1_H
.define A1_H
; content

.extern G_Func1

.endif

----al.s -
.include “a1.h”
G_Func1:

ret

54 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

5.3.39 .LOBYTE - Low Byte

4 Syntax
<symbol> = .lobyte(<expr>)
€ Description

Access one byte from expr low byte. (bit 0~7)

¢ Example
Ans = .lobyte(0x1234)
; Ans == 0x34

5.3.40 .LOCAL - Declare Local Macro Variable

4 Syntax

.local <symbol>

€ Description
Declares that the specified symbol is to be considered in local context to the macro. <label> may
be identical to another label declared outside the macro definition; there will be no conflict

between the two. If the macro is called recursively, each invocation will have its own local copy.

¢ Example

.macro M_x1
local LL_exit
jmp LL_exit

LL_exit:

.endmacro

5.3.41 .MACRO - Declare Macro

€4 Syntax
.macro <symbol> [<arg1>, <arg2>, ...]
<statement>

.endmacro

& Description
A macro is a sequence of instructions that can be inserted in the assembly source code by using
a single macro call. The macro must first be defined, then it can be referred to in subsequent
source code. A macro can call another macro, or may call itself recursively.

¢ Example

.macro M_LDXY arg_value_x, arg_value_y
LDX #arg_value_x
LDY #arg_value_y

.endmacro

55 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

5.3.42 .MOD - Remainder Operation

4 Syntax
<symbol> = <expr1> .mod <expr2>
€ Description
Calculate the remainder of expr1 / expr2.

¢ Example
ans =5 .mod 3

,ans ==

5.3.43 .NOT - Boolean Reverse Operation

4 Syntax

<symbol> = .not <expr1>
€ Description

Calculate the reverse value of expr1.
¢ Example

ans = .not 1

,ans ==

5.3.44 .OR - Boolean Or Operation

4 Syntax

<symbol> = <expr1> .or <expr2>
€ Description

Calculate expr1 || expr2
¢ Example

ans =0 .or 1

,ans ==

5.3.45 .ORG - Set Program Origin

4 Syntax
.org <expr>

¢ Description
Set the program origin for subsequent code at the address defined in <expr>. If <label> is
specified, it will be given the value of the <expr>. If no ORG is specified, code generation will
begin at address zero.

¢ Example
.org 0x7e0

56 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

word L_TM2_INT
.code
L TM2_INT:

RTI

5.3.46 .REPEAT - Begin a Repeat-Until Loop Block Definition

4 Syntax
.repeat <expr>
<statement>
.endrepeat
¢ Description
Repeat assembly <statement>, the number of times is assigned by <expr>.

¢ Example

.org 0x7e0

.word L_TM2_INT
.code
L_TM2_INT:

RTI

5.3.47 .RES - Reserve Space
4 Syntax
.res <expr1>, <expr2>
€ Description
Reserve size of <expr1> in memory and fill in with the value <expr2>.

¢ Example
; Reserve 12 bytes of memory with value $AA
.res 12, $AA

5.3.48 .ROUND - Round

4 Syntax
.round(<expr>)
¢ Description

Round the <expr> up to the nearest value.

5.3.49 .SCOPE - Start Variable Scope

€4 Syntax

.scope <symbol>

57 Ver. 5.6

2025/11/25

(\) Nyquest NYASM User Manual

5.3.50

5.3.51

*

*

<statements>

.endscope

Description

Start a variable scope. In the range of .scope to .endscope, the new defined symbol can be
directly accessed. When the symbol is asccessed outside, it must add a prefix word of scope.
The name of scope cannot conflict with the rest of symbols.

Example

.scope Error ; Start new scope named Error
None =0
File =1
Parse = 2

.endscope ; close scope

LDA #Error::File ; use symbol from scope Error
See Also

.endscope

.SEGMENT - Program Segment

L 4

*

Syntax

.segment “<symbol>"

Description

Switch to another program segment. The .segment directive has to be named with a string. The

available names is relative to the selected IC. Please refer to IC document.

Example

.segment “tm0_int”
.word L_tmO0_int

.code

L_tmO_int:

See Also

.code

.SETCPU - Setup CPU

L 4

*

*

Syntax

.setcpu <symbol>

Description

Label the IC Body in front of the file. This directive can only declare once.
Example

.setcpu NY8LO30A

58 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

5.3.52 .SHL - Left Shift

4 Syntax

<expr1> .shl <expr2>
¢ Description

Calculate the result as <expr1> left shifts by <expr2>.
¢ Example

Result = 2 .shl 1

; Result =4

5.3.53 .SHR - Right Shift

4 Syntax
<expr1> .shr <expr2>
€ Description
Calculate the result as <expr1> right shifts by <expr2>.
¢ Example
Result = 2 .shr 1
; Result =1
5.3.54 .STRING - Access String

4 Syntax
.string(<symbol>)
€ Description
Get the defined string of<symbol>. It's applied to macro usually, user can get the string that it
defined.
¢ Example
.macro M_inc_v8Ix name
.inchin .string(name)

.endmacro

5.3.55 .WORD - Word

€4 Syntax

.word <expr1>
€ Description

Write a data of one word (2-bit) at current location, the content is <expr1>.
¢ Example

.word Ox12EF

59 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

5.3.56 .XOR - Boolean Exclusive Or

4 Syntax

<expr1> .xor <expr2>
¢ Description

Calculate <expr1> exclusive or <expr2> outcome.
¢ Example

Result = 0 .xor 1

; Result =1

60 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

6

6.1

Macro Language

Macros are user defined sets of instructions and directives that will be evaluated in-line with the assembler

source code whenever the macro name is invoked. Macros consist of sequences of assembler instructions

and directives. They can be written to accept arguments, making them quite flexible. Their advantages are:

* Higher levels of abstraction, improving readability and reliability.

» Consistent solutions to frequently performed functions.

« Simplified changes.

* Improved testability.

Applications might include creating complex tables, frequently used code, and complex operations.

Macro Syntax for NY4, NY5, NY7, NY8A, NY9

NYASM macros are defined according to the following syntax:

<label> macro [<arg1>,<arg2> ..., <argn>]

endm

Where <label> is a valid NYASM label and <arg> is any number of optional arguments supplied to the

macro. The values assigned to these arguments at the time the macro name is invoked will be substituted

wherever the argument name occurs in the body of the macro. The body of a macro may be comprised of

NYASM directives, or NYASM Macro Directives (LOCAL for example). Refer to Chapter 5.2. NYASM

continues to process the body of the macro until an EXITM or ENDM directive is encountered.

Note: Forward references to macros are not permitted.

6.1.1

6.1.2

Macro Directives

There are directives that are unique to macro definitions. They cannot be used out of the macro
context (refer to Chapter 5.2.1 for details concerning these directives):

*« MACRO

« LOCAL

« EXITM

« ENDM

When writing macros, you can use any of these directives PLUS any other directives supported by

NYASM.

Text Substitution

String replacement and expression evaluation may appear within the body of a macro. Arguments

61 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

6.1.3

may be used anywhere within the body of the macro.

Command Description

<arg> Substitute the argument text supplied as part of the macro invocation.

define_table macro num_of _entry
locala=0
while a < num_of_entry
dwO
a+=1
endw

endm

when invoked, would generate:
dw 0 ; 1st
dw 0 ; 2nd

dw 0 ; (num_of_entry-1)-th
dw 0 ; (num_of_entry)-th

Macro Usage

Once the macro has been defined, it can be invoked at any point within the source module by using a
macro call, as described below:

<macro_name> [<arg>, ..., <arg>]

where <macro_name> is the name of a previously defined macro and arguments are supplied as
required. The macro call itself will not occupy any locations in memory. However, the macro
expansion will begin at the current memory location. Commas may be used to reserve an argument
position. The EXITM directive (see Chapter 5) provides an alternate method for terminating a macro
expansion. During a macro expansion, this directive causes expansion of the current macro to stop
and all code between the EXITM and the ENDM directives for this macro to be ignored. If macros are

nested, EXITM causes code generation to return to the previous level of macro expansion.

6.2 Macro Syntax for NY8L

6.2.1

MACRO Syntax

NY8L macros are defined according to the following syntax:

.macro <label> [<arg1>,<arg2> ..., <argn>]

62 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

6.2.2

6.2.3

.endmacro

Where <label> is a valid NYASM label and <arg> is any number of optional arguments supplied to
the macro. The values assigned to these arguments at the time the macro name is invoked will be
substituted wherever the argument name occurs in the body of the macro. The body of a macro may
be comprised of NYASM directives, or NYASM Macro Directives (LOCAL for example). Refer to
Chapter 5.3. NYASM continues to process the body of the macro until an EXITM or ENDM directive

is encountered.

Note: Forward references to macros are not permitted.

Macro Directives

There are directives that are unique to macro definitions. They cannot be used out of the macro

context (refer to Chapter 5.3 for details concerning these directives):

.MACRO — Declare Macro

.ENDMACRO — End Macro Defined Block

.LOCAL — Declare Local Macro Variable

.IFBLANK — Conditional Assembly If Parameter Is Blank
.IENBLANK — Conditional Assembly If Parameter Isn’t Blank
.BLANK — Check Blank Symbol

When writing macros, you can use any of these directives PLUS any other directives supported by
NYASM.

Text Substitution

String replacement and expression evaluation may appear within the body of a macro. Arguments

may be used anywhere within the body of the macro.

Command Description

<arg> Substitute the argument text supplied as part of the macro invocation.

¢ Example
.macro CAJE value, label
cmp #value
jz label

.endmacro

63 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

6.2.4 Macro Usage

Once the macro has been defined, it can be invoked at any point within the source module by using a
macro call, as described below:

<macro_name> [<arg>, ..., <arg>]

where <macro_name> is the name of a previously defined macro and arguments are supplied as
required. The macro calls will not occupy any locations in memory. However, the macro expansion
will begin at the current memory location. Commas may be used to reserve an argument position.
The used parameters of macro calls can be less than the definied parameters, users can check the

designated parameters whether are delivered from caller by .blank.

64 Ver. 5.6 2025/11/25

(\) Nyquest

NYASM User Manual

7 Expression Syntax and Operation

This chapter describes various expression formats, syntax, and operations used by NYASM.

7.1 NY4,NY5, NY7, NY8A, NY9

Content:

7141

7.1 Numeric Constants and Radix

7.2 High/Mid/Low

7.3 _Increment/Decrement (++/--)

Numeric Constants and Radix

NYASM supports the following radix forms: hexadecimal, decimal, octal and binary. The default radix
is decimal the default radix determines what value will be assigned to constants in the object file
when a radix is not explicitly specified by a base descriptor. NYASM only supports unsigned
constants and the values are assumed to be positive.

The following table presents the various radix specifications:

Table 7.1: Radix Specifications

Type Syntax Example
Decimal D’<digits>’ D100’
H'<hex_digits>’ Hof
Hexadecimal Ox<hex_digits> 0x9f
<hex_digits>h 9fh
Octal O’<octal_digits>’ orrr
Binary B’<binary_digits>’ B’001110071’
<binary_digits>b 00111001b
Table 7.2: Arithmetic Operators and Precedence
Operator Example
$ Current/Return program counter goto $ + 3
(Left Parenthesis 1+ (d*4)
) Right Parenthesis (Length + 1) * 256
! Item NOT (logical complement) if! (@a==D)
- Negation (2’s complement) -1 * Length
~ Complement flags = ~flags

high Return high byte of a 24-bit value

mvma high(0x121314)

;accumulator will contain 0x12

65

Ver. 5.6

2025/11/25

(\) Nyquest NYASM User Manual

Operator Example
mid Return mid byte of a 24-bit value mvma mid(0x121314)
:accumulator will contain 0x13
low Return low byte of a 24-bit value mvma low(0x121314)
:accumulator will contain 0x14
high | Return low nibble of high byte of a 24-bit value | M*Ma MNGNO(0x123456)
;accumulator will contain 0x2
high Return high nibble of high byte of a 24-bit value | Mm@ Migh1(0x123456)
;accumulator will contain 0x1
mido Return low nibble of middle byte of a 24-bit value | M2 Mid0(0x123456)
;accumulator will contain 0x4
mid1 Return high nibble of middle byte of a 24-bit value | /M2 Mid1(0x123456)
;accumulator will contain 0x3
low0 Return low nibble of low byte of a 24-bit value mvma low0(0x123456)
;accumulator will contain 0x6
low1 Return high nibble of low byte of a 24-bit value mvma low1(0x123456)
;accumulator will contain 0x5
* Multiply a=b*c
/ Divide a=bl/c
% Modulus entry_len =tot_len % 16
+ Add tot_len =entry len* 8 + 1
- Subtract entry_len = (tot-1)/8
<< Left shift flags = flags << 1
>> Right shift flags = flags >> 1
>= Greater or equal if entry_idx >= num_entries
> Greater than if entry_idx > num_entries
< Less than if entry_idx < num_entries
<= Less or equal if entry_idx <= num_entries
== Equal to if entry_idx == num_entries
1= Not equal to if entry_idx != num_entries
& Bitwise AND flags = flags & ERROR_BIT
A Bitwise exclusive OR flags = flags * ERROR_BIT
| Bitwise inclusive OR flags = flags | ERROR_BIT
&& Logical AND if len == 512) && (b ==¢)
Il Logical OR if (len ==512) || (b ==¢)
= Set equal to entry_index =0
+= Add to, set equal entry_index +=1
-= Subtract, set equal entry_index -= 1
*= Multiply, set equal entry_index *= entry_length

66 Ver. 5.6 2025/11/25

(\) Nyquest

NYASM User Manual

71.2

713

Operator Example
/= Divide, set equal entry_total /= entry_length
%= Modulus, set equal entry_index %= 8
<<= Left shift, set equal flags <<=3
>>= Right shift, set equal flags >>=3
&= AND, set equal flags &= ERROR_FLAG

|= Inclusive OR, set equal

flags |= ERROR_FLAG

A= Exclusive OR, set equal flags ~= ERROR_FLAG
++ Increment i ++
- Decrement i -

High/Mid/Low

4 Syntax
high <operand>
mid <operand>
low <operand>

¢ Description

These operators are used to return one byte of a multi-byte label value. This is done to handle

dynamic pointer calculations as might be used with table read and write instructions.

Increment/Decrement (++/--)

4 Syntax
<variable>++

<variable>--

€ Description

Increments or decrements a variable value. These operators can only be used on a line by

themselves; they cannot be embedded within other expression evaluation.

¢ Example
LoopCount = 4
while LoopCount > 0
nop
LoopCount --
Endw

67

Ver. 5.6 2025/11/25

(\) Nyquest

NYASM User Manual

7.2 NY8L

Content:

1.17.2.1 _ Numeric constants and Radix

1.17.2.2 _High/Mid/Low

7.2.1 Numeric constants and Radix

NYASM supports the following radix forms: hexadecimal, decimal and binary. The default radix is

decimal the default radix determines what value will be assigned to constants in the object file when a

radix is not explicitly specified by a base descriptor. NYASM only supports unsigned constants and

the values are assumed to be positive.

Table 7.3 Radix Specifications

Type Syntax Example
Decimal <digits> 100
$<hex_digits>’ $of
Hexadecimal
Ox<hex_digits> 0x9f
Binary %<binary_digits>’ %00111001
Table 7.4 Arithmetic Operators and Precedence
Operator Example
(Left Parenthesis 1+(d*4)
) Right Parenthesis (Length + 1) * 256
! Item NOT (logical complement) if ! (@a==Db)
- Negation (2’'s complement) -1 * Length
Complement flags = ~flags

.bitnot

.bankbyte | Return high byte of a 24-bit value

mvma high(0x121314)
;accumulator will contain 0x12

.hibyte | Return mid byte of a 24-bit value

mvma mid(0x121314)
;accumulator will contain 0x13

obyte | Return low byte of a 24-bit value

mvma low(0x121314)
;accumulator will contain 0x14

* Multiply a=b*c

/ Divide a=b/c

% Modulus entry_len = tot_len % 16
+ Add tot_len =entry len* 8 + 1
- Subtract entry len = (tot-1)/8

68

Ver. 5.6 2025/11/25

NYASM User Manual

7.2.2

Operator Example
<< Left shift flags = flags << 1
>> Right shift flags = flags >> 1
>= Greater or equal if entry_idx >= num_entries
> Greater than if entry_idx > num_entries
< Less than if entry_idx < num_entries
<= Less or equal if entry_idx <= num_entries
== Equal to if entry_idx == num_entries
I= Not equal to if entry_idx != num_entries
&
Bit AND flags = flags & ERROR_BIT
.bitand
A Bit mutex OR flags = flags * ERROR_BIT
|
Bit OR flags = flags | ERROR_BIT
.bitor
&&
Logical AND if (len == 512) && (b ==¢)
.and
| , :
Logical OR if (len == 512) || (b == ¢)
.or
.round | Round .round(2.345)
.ceil Unconditional carry .ceil(2.345)
floor Unconditional round down .floor(2.345)

High/Mid/Low

4 Syntax
.bankbyte <operand>
.hibyte <operand>

.lobyte <operand>

4 Description

These operators are used to return one byte of a multi-byte label value. This is done to handle

dynamic pointer calculations as might be used with table read and write instructions.

Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

8 Revision History

Version Date Description Modified Page

1.00 2007/12/20 | The first version. -

1.01 2009/10/12 | Revision. -

1.1 2010/01/11 | Add NY4 series MCU. 75

1. Add NY4/NY5 series new bodies. 75
1.2 2010/07/20

2. Add NYASM Errors/Warnings. 61
1.3 2010/08/17 | Windows 7 complied. 11
1.4 2012/02/29 | Modify NY5B/5C series MCU. 75

1. Please use Windows XP or above operating system version. 11
1.5 2013/06/25

2. Add NY4(B) and NY7 series to MCU List. 75
1.6 2013/08/16 | Modify NY7 series of MCU List. 59

1. Modify the example of MACRO. 35

2. Modify the default of radix as decimal. 37, 65, 87
1.7 2014/02/24

3. Modify Errors/Warnings messages. 79

4. Add “Forward reference” to Glossary. 86
1.8 2014/05/16 | Add NY8 series MCU. 78

Change the IC bodies of MCU List: NY4B018C, NY4B038C,
1.9 2014/11/14 75
NY4B058C, NY5C158C, NY5C185C, NY5C345C.

1. Add binary representation
2.0 2015/01/29 65
2. Modify the examples of arithmetic operators.

21 2015/07/27 | Modify Ul description. 17

22 2015/11/20 | Add NY9UB series MCU. 79

1. Remove NY4xxxxA/NY5xxxxA series, keep NY5AxxxA series. -
2. Add NY8 series MCU. 61

2.3 2016/01/27

70 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual
Version Date Description Modified Page

1. Add NY6 series MCU. 60
24 2016/05/20

2. Add NY8A051C/51D MCU. 62
2.5 2016/08/22 | Add NYBA53D MCU. 63

1. Remove NY5AA series. -
2.6 2016/11/18

2. Add NY9QUPO1A MCU. 79

1. Support NY8L series MCU. 42,62, 66
2.7 2017/05/23 | 2. Add NY8BA054A MCU. 78

3. Add NY8L series MCU. 78
2.8 2017/08/09 | Add NY8A054D MCU. 78

1. Modify List Directive Options and NYASM Assembler Options. 34,74
29 2017/11/17

2. Add NY8BAO51E MCU. 81
3.0 2018/02/08 | Add NY8B062D MCU. 81

1. Remove DT command. -
3.1 2018/08/27 | 2. Remove NY8AO057A, NY8B073A, NY8B0O74A MCU. -

3. Remove NY6C450A ~ NY6C720A MCU. -
3.2 2018/11/21 | Add NY8B062A MCU. 80
3.3 2019/02/19 | Add NY8AO051F, NYQUP0O8A MCU. 78,79

Add NY5P025J, NY5P055J, NY5P085J, NY5B035C, NY5B045C,
3.4 2019/05/28 76

NY8A050D, NYSBAES51D and NY8B062B MCU.
3.5 2019/08/22 | Remove NY8LO05A, NY8L010A and add NY8LP10A, NY8LP11A. -
3.6 2019/11/14 | Add NY5P series, NY5A018C, NY5A025C and NY8BM72A. 76
3.7 2020/03/16 | Add NY5AC and NY5BC MCU. 77

1. Add the command description of.bitor and .word. 44,59
3.8 2020/08/18

2. Add NY6 series, NYBAO54E, and NY8B061D IC. 77

71 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

Version Date Description Modified Page

1. Remove NY4B018B / NY5AxxxB / NY5BxxxB / NY5C112B / 132B / -
3.9 2020/11/12 158B / 185B/ 225B / 265B / 305B / 345B IC.

2. Add NYBAO53E / NYQUPO2AIC. 82

1. Remove NYGAOO3A / NYGAO05A/ NY8LO50A IC. -
4.0 2021/01/27

2. Add NY8BOG62E / NY8TMS52D IC. 83
4.1 2021/05/18 | Add NY5QxxxA/NY8BO60E / NYSBEG2D IC. 80

1. Remove DATA, DB and DN commands. -
2. Add NY5Q020A. 79

4.2 2021/09/10

43 2021/11/11 | Add NY8TEG4AIC. 82

Add NY5Q026A, NY5Q046A, NY5Q080A, NY5Q160A, NY8BA051H,

4.4 2022/02/22 79

NY8AES51F -

1. System requirement adds Microsoft Win11. 9
4.5 2022/05/19

2. Add NY8B060D. 82
4.6 2022/08/24 | Add NY8BO61E. 82
4.7 2022/11/28 | Add NY4P045C, NY8BO62F. 77
4.8 2023/02/15 | Add NY4P018C, NY4P065C, NY4P085C, NY4P105C and NY8AO50E. 77

4.9 2023/05/15 | Fix incorrect description. -

5.0 2023/08/21 Add NY8AO052E. 83
1. Add the .align2 command. 40
5.1 2024/02/22 | 2. Add NY8BM61D and NY8BM62D. 84

3. Remove NY8L020A and NY8L0O30A. -

Remove NY5P520J, NY5P720J, NYSP1K0J, NY5P1K2J, NY5C4508B,
NY5C520B, NY5C640B, NY5C720B, NY7C450A, NY7C520A,
5.2 2024/08/22 -
NY8AO51A, NYBA051C, NYBAO51E, NYB8A053A, NYS8AES51D,

NY8BO60OE, NY8B061D and NY8BO71A.

72 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

Version Date Description Modified Page

Add NY5QO019A, NY5QO039A, NY5Q079A, NY5Q159A, NYBA051J,

5.3 2025/02/27 80, 82, 83
NY8A051K, NY8BAO51L, NY8LPO08.

1. Add a pseudo-instruction. 28

54 2025/05/27
2. Add NY8AO051H1, NY8B062F1, NYSBM84A , 82, 83

5.5 2025/08/27 | Add NY8AO54E1, NY8F2481. 83. 84
1. Add the DWS pseudo-instruction. 24
5.6 2025/11/25
2. Add NYBAO50E1, NY8F1141, and NY8F1241. 83, 84

73 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

Appendix A - Quick Reference

This appendix lists abbreviated information on NYASM and MCU instruction sets for use in developing

applications using NYASM.

Content:
A.1 NYASM Quick Reference
A.2 MCU List

A.1 NYASM Quick Reference

The following Quick Reference Guide gives all the instructions, directives, and command list options for
NYASM Assembler.

Table A.1: NYASM Directive Language Summary

Directive Description Syntax
CONTROL DIRECTIVES
CONSTANT Declare symbol constant. Z(I):bséla>n[t=<expr>,...,<Iabel>[=<expr>]]
#DEFINE Define a text substitution label. fidefine <name> E:;fé”)‘fi]‘arg)]
END End program block. end
EQU Define an assemble constant. <label> equ <expr>
ERROR Issue an error message. error "<text_string>"
#INCLUDATA Include binary data file. #includata "<data_file>" [,<address>]
#INCLUDE Include additional source file. #include "<include_file>"
LIST Listing options. list [<list_option>,...,<list_option>]
MESSG Create user defined message. messg "<message_text>"
ORG Set program origin. [<label>:] org <expr>
LINES Re-declare line-per-page. lines <value>
NEWPAGE Re-declare line-per-page. Newpage <value>
RADIX Specify default radix. radix <default_radix>
SUBTITLE Specify program subtitle. subtitle "<sub_text>"
TITLE Specify program title. title "<title_text>"
#UNDEFINE Delete a substitution label. #undefine <label>
variable
VARIABLE Declare symbol variable.
<label>[=<expr>,...,<label>[=<expr>]]

74

Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

Directive Description Syntax
CONDITIONAL ASSEMBLY
Escape from a FOR, WHILE or REPEAT-UNTIL .
BREAK loop, or Jump to the end of a SWITCH block. break [<Boolean expression>]
. . switch <expression>
CASE Part of a SWITCH block; must use CASE with case <expression 1>[,<expression 2>]
SWITCH.
<statements>
Jump to the begin of FOR, WHILE or
REPEAT-UNTIL loop that contains CONTINUE
CONTINUE directive. continue [<Boolean expression>]
All statements behind CONTINUE in a loop are
ignored.
Part of a SWITCH block; must use DEFAULT default
DEFAULT with SWITCH. © i:tatements>
Begin default assembly block to SWITCH.
ELSE Begin alternative assembly else
block to IF. <statements>
ENDFOR End a FOR loop. endfor
ENDIF End conditional assembly block. endif
Directive for coding convenience: presenting
ENDS ENDFOR, ENDW, ENDSW, ENDIF. ends
ENDSW End conditional switching assembly block. endsw
ENDW End a WHILE loop. endw
. for <iterator> = <expr1> to <expr2>
FOR Perform counting loop FOR. [step <expra>]
IF Begin conditionally assembled code block. if <expr>
IFDEF Execute if symbol has been defined. ifdef <label>
IFNDEF Execute If symbol has not been defined. ifndef <label>
Repeat
REPEAT Begin at-least-one-time loop. <statements>
until <Boolean expression>
SWITCH Begin conditional switching assembly block. switch <expr>
Repeat
UNTIL End at-least-one-time loop if condition is true. <statements>
until <Boolean expression>
WHILE Perform loop WHILE condition is true. while <expr>
DATA
CBLOCK Define a block of constants. cblock [<expr>]
DW Declare data of one word. [<label>] dw <expr>[,<expr>,...,<expr>]
ENDC End an automatic constant block. endc
MACRO
ENDM End a macro definition. endm
EXITM Exit from a macro. exitm
EXPAND Expand macro listing. expand

75

Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

Directive Description Syntax
LOCAL Declare local macro variable. local <label>[,<label>]
MACRO Declare macro definition. <label> macro [<arg>,...,<arg>]
MAXMACRODEPTH | Setup the maximum depth of macro expansion. | Maxmacrodepth [=] <expr>
NOEXPAND Turn off macro expansions. noexpand
Table A.2: NYASM Assembler Options:
OPTION DEFAULT DESCRIPTION
Enable/Disable case sensitivity
c Off c=on Enable
c=off Disable
Set the processor type:
None /p=<processor_type>
P where <processor_type> is an Nyquest MCU device. For example,
NYS5AO005A.
/unlockrsvmem
unlockrsvmem Locked For 4-bit MCU only. Allow the programming right in reserved memory,
area.
Configuration /nocfgb!k . :
nocfgblk . For 4-bit MCU only. Ignore the assembly time check for the existence
block required ! .)
of configuration block file.

Table A.3: Radix Types Supported

Type Syntax Example
Decimal D’<digits>’ D100’
H’'<hex_digits>’ H 9f
Hexadecimal Ox<hex_digits> 0x9f
<hex_digits>h 9fh
Octal O’<octal_digits>’ orrr
Binary B’<binary_digits>’ B’'00111001°
Table A.4: NYASM Arithmetic Operators
Operator Example
$ Current/Return program counter goto $ +3
(Left Parenthesis 1+(d*4)
) Right Parenthesis (Length + 1) * 256
! Iltem NOT (logical complement) if 1 (a == b)
- Negation (2’s complement) -1 * Length
~ Complement flags = ~flags
76 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

Operator Example
) . . mvma high 0x121314
high Return high byte of a 24-bit value ,)
;accumulator will contain 0x12
. .) mvma mid 0x121314
mid Return mid byte of a 24-bit value) .
;accumulator will contain 0x13
) mvma low 0x121314
low Return low byte of a 24-bit value) .
;accumulator will contain 0x14
) . i) mvma high0 0x123456
highO Return low nibble of high byte of a 24-bit value ,)
;accumulator will contain 0x2
) .))) mvma high1 0x123456
high1 Return high nibble of high byte of a 24-bit value , .
;accumulator will contain 0x1
0 Return low nibble of middle byte of a 24-bitf mvma mid0 0x123456
mi
value ;accumulator will contain 0x4
1 Return high nibble of middle byte of a 24-bitf mvma mid1 0x123456
mi
value ;accumulator will contain 0x3
. . mvma low0 0x123456
low0 Return low nibble of low byte of a 24-bit value) .
;accumulator will contain 0x6
))) mvma low1 0x123456
low1 Return high nibble of low byte of a 24-bit value))
;accumulator will contain 0x5
* Multiply a=b*c
/ Divide a=b/c
% Modulus entry len =tot_len % 16
+ Add tot_len =entry len* 8 + 1
- Subtract entry len = (tot-1)/8
<< Left shift flags = flags << 1
>> Right shift flags = flags >> 1
>= Greater or equal if entry_idx >= num_entries
> Greater than if entry_idx > num_entries
< Less than if entry_idx < num_entries
<= Less or equal if entry_idx <= num_entries
== Equal to if entry_idx == num_entries
I= Not equal to if entry_idx != num_entries
& Bitwise AND flags = flags & ERROR_BIT
A Bitwise exclusive OR flags = flags * ERROR_BIT
| Bitwise inclusive OR flags = flags | ERROR_BIT
&& Logical AND if (len == 512) && (b ==¢)
Il Logical OR if (len ==512) || (b ==¢)

77 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual
Operator Example
= Set equal to entry_index =0
+= Add to, set equal entry_index += 1
-= Subtract, set equal entry_index -= 1
*= Multiply, set equal entry_index *= entry_length
/= Divide, set equal entry_total /= entry_length
Y%= Modulus, set equal entry_index %= 8
<<= Left shift, set equal flags <<=3
>>= Right shift, set equal flags >>=3
&= AND, set equal flags &= ERROR_FLAG
|= Inclusive OR, set equal flags |= ERROR_FLAG
A= Exclusive OR, set equal flags ~= ERROR_FLAG
++ Increment i++
-- Decrement i--

78

Ver. 5.6

2025/11/25

(\) Nyquest NYASM User Manual

A.2 MCU List

Table A.5: MCU List

No. IC type PROG ROM size | DATA ROM size| Reserved Memory (I/O Pin Count
1 NY4P018C 16K x 10 48K x 10 0x001F--0x07FF 81/0
2 NY4P045C 16K x 10 112K x 10 0x001F--0x07FF 81/0
3 NY4P065C 16K x 10 160K x 10 0x001F--0x07FF 81/0
4 NY4P085C 16K x 10 208K x 10 0x001F--0x07FF 81/0
5 NY4P105C 16K x 10 256K x 10 0x001F--0x07FF 81/0
6 NY4A003B 12K x 10 12K x 10 0x001F--0x07FF 41/0
7 NY4A005B 16K x 10 16K x 10 0x001F--0x07FF 41/0
8 NY4A008B 16K x 10 24K x 10 0x001F--0x07FF 41/0
9 NY4A011B 16K x 10 32K x 10 0x001F--0x07FF 41/0
10 NY4B003B 12K x 10 12K x 10 0x001F--0x07FF 81/0
11 NY4B005B 16K x 10 16K x 10 0x001F--0x07FF 81/0
12 NY4B008B 16K x 10 24K x 10 0x001F--0x07FF 81/0
13 NY4B011B 16K x 10 32K x 10 0x001F--0x07FF 81/0
14 NY4B018C 16K x 10 48K x 10 0x001F--0x07FF 81/0
15 NY4B025B 16K x 10 64K x 10 0x001F--0x07FF 81/0
16 NY4B038C 16K x 10 96K x 10 0x001F--0x07FF 81/0
17 NY4B045B 16K x 10 112K x 10 0x001F--0x07FF 81/0
18 NY4B058C 16K x 10 144K x 10 0x001F--0x07FF 81/0
19 NY4B065B 16K x 10 160K x 10 0x001F--0x07FF 81/0
20 NY4B075B 16K x 10 184K x 10 0x001F--0x07FF 81/0
21 NY4B085B 16K x 10 208K x 10 0x001F--0x07FF 81/0
22 NY4B095B 16K x 10 232K x 10 0x001F--0x07FF 81/0
23 NY4B105B 16K x 10 256K x 10 0x001F--0x07FF 81/0
24 NY4B115B 16K x 10 280K x 10 0x001F--0x07FF 81/0
25 NY4B125B 16K x 10 304K x 10 0x001F--0x07FF 81/0
26 NY4B145B 16K x 10 352K x 10 0x001F--0x07FF 81/0
27 NY4B165B 16K x 10 400K x 10 0x001F--0x07FF 81/0
28 NY5P025B 16K x 10 64K x 10 0x001F--0x0BFF 16 1/0
29 NY5P055B 16K x 10 136K x 10 0x001F--0xOBFF 16 1/0
30 NY5P085B 16K x 10 208K x 10 0x001F--0xOBFF 16 1/0
31 NY5P185B 16K x 10 448K x 10 0x001F--0x0BFF 16 1/0
32 NY5P025J 16K x 10 64K x 10 0x001F--0xOBFF 16 1/0
33 NY5P055J 16K x 10 136K x 10 0x001F--0x0BFF 16 1/0

79 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual
No. IC type PROG ROM size | DATA ROM size| Reserved Memory (I/O Pin Count
34 NY5P085J 16K x 10 208K x 10 0x001F--OxOBFF 16 1/0
35 NY5P185J 16K x 10 448K x 10 0x001F--OxOBFF 16 1/0
36 NY5P345J 16K x 10 832K x 10 0x001F--OxOBFF 16 1/0
37 NY5A003C 12K x 10 12K x 10 0x001F--OxOBFF 7+11/0
38 NY5A005C 16K x 10 16K x 10 0x001F--OxOBFF 7+11/0
39 NY5A008C 16K x 10 24K x 10 0x001F--OxOBFF 7+11/0
40 NY5A011C 16K x 10 32K x 10 0x001F--OxOBFF 7+11/0
41 NY5A018C 16K x 10 48K x 10 0x001F--OxOBFF 7+11/0
42 NY5A025C 16K x 10 64K x 10 0x001F--OxOBFF 7+11/0
43 NY5A035C 16K x 10 88K x 10 0x001F--OxOBFF 7+11/0
44 NY5A045C 16K x 10 112K x 10 0x001F--OxOBFF 7+11/0
45 NY5A055C 16K x 10 136K x 10 0x001F--OxOBFF 7+11/0
46 NY5A065C 16K x 10 160K x 10 0x001F--OxOBFF 7+11/0
47 NY5B005C 16K x 10 16K x 10 0x001F--OxOBFF 14+11/0
48 NY5B008C 16K x 10 24K x 10 0x001F--OxOBFF 14+11/0
49 NY5B011C 16K x 10 32K x 10 0x001F--OxOBFF 14+11/0
50 NY5B018C 16K x 10 48K x 10 0x001F--OxOBFF 14+11/0
51 NY5B025C 16K x 10 64K x 10 0x001F--OxOBFF 14+11/0
52 NY5B035C 16K x 10 88K x 10 0x001F--OxOBFF 14+11/0
53 NY5B046C 16K x 10 112K x 10 0x001F--OxOBFF 14+11/0
54 NY5B055C 16K x 10 136K x 10 0x001F--OxOBFF 14+11/0
55 NY5B065C 16K x 10 160K x 10 0x001F--OxOBFF 14+11/0
56 NY5B075C 16K x 10 184K x 10 0x001F--OxOBFF 14+11/0
57 NY5B085C 16K x 10 208K x 10 0x001F--OxOBFF 14+11/0
58 NY5B112C 16K x 10 272K x 10 0x001F--OxOBFF 14+11/0
59 NY5B132C 16K x 10 320K x 10 0x001F--OxOBFF 14+11/0
60 NY5B158C 16K x 10 384K x 10 0x001F--OxOBFF 14+11/0
61 NY5B185C 16K x 10 448K x 10 0x001F--OxOBFF 14+11/0
62 NY5C112C 16K x 10 272K x 10 0x001F--OxOBFF 19+1 1/0
63 NY5C132C 16K x 10 320K x 10 0x001F--OxOBFF 19+11/0
64 NY5C158C 16K x 10 384K x 10 0x001F--OxOBFF 19+1 1/0
65 NY5C185C 16K x 10 448K x 10 0x001F--OxOBFF 19+11/0
66 NY5C225C 16K x 10 544K x 10 0x001F--OxOBFF 19+1 1/0
67 NY5C265C 16K x 10 640K x 10 0x001F--OxOBFF 19+11/0
68 NY5C305C 16K x 10 736K x 10 0x001F--OxOBFF 19+1 1/0
69 NY5C345C 16K x 10 832K x 10 0x001F--OxOBFF 19+11/0

80 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual
No. IC type PROG ROM size | DATA ROM size| Reserved Memory (I/O Pin Count
70 NY5Q019A 48K x 10 48K x 10 0x001F—O0xO07FF 81/0
71 NY5QO020A 48K x 10 48K x 10 0x001F—O0x07FF 81/0
72 NY5Q026A 64K x 10 64K x 10 0x001F—O0xO07FF 41/0
73 NY5QO039A 64K x 10 96K x 10 0x001F—0x07FF 81/0
74 NY5Q040A 64K x 10 96K x 10 0x001F—O0x07FF 81/0
75 NY5QO046A 64K x 10 112K x 10 0x001F—O0x07FF 121/0
76 NY5QO060A 64K x 10 144K x 10 0x001F—O0x07FF 16 1/0
77 NY5QO079A 64K x 10 192K x 10 0x001F—O0x07FF 121/0
78 NY5QO080A 64K x 10 192K x 10 0x001F—O0xO07FF 121/0
79 NY5Q092A 64K x 10 224K x 10 0x001F—O0x07FF 16 1/0
80 NY5Q159A 64K x 10 384K x 10 0x001F—O0x07FF 121/0
81 NY5Q160A 64K x 10 384K x 10 0x001F—O0x07FF 121/0
82 NY5Q172A 64K x 10 416K x 10 0x001F—O0x07FF 16 1/0
83 NY5Q342A 64K x 10 832K x 10 0x001F—O0x07FF 20 1/0
84 NYG6P025A 64K x 10 64K x 10 0x001E—Ox03FF 91/0
85 NY6P025J 64K x 10 64K x 10 0x001E—Ox03FF 16 1/0
86 NY6P055J 136K x 10 136K x 10 0x001E—Ox03FF 16 1/0
87 NY6P085J 208K x 10 208K x 10 0x001E—Ox03FF 16 1/0
88 NY6P185J 448K x 10 448K x 10 0x001E—Ox03FF 24 1/0
89 NY6P345J 832K x 10 832K x 10 0x001E—Ox03FF 24 1/0
90 NYGAO08A 24K x 10 24K x 10 0x001E—Ox03FF 81/0
91 NY6AO011A 32K x 10 32K x 10 0x001E—Ox03FF 81/0
92 NYGAO18A 48K x 10 48K x 10 0x001E—Ox03FF 81/0
93 NY6A025A 64K x 10 64K x 10 0x001E—Ox03FF 81/0
94 NYBA035A 88K x 10 88K x 10 0x001E—Ox03FF 81/0
95 NYG6A045A 112K x 10 112K x 10 0x001E—Ox03FF 81/0
96 NYBA055A 136K x 10 136K x 10 0x001E—Ox03FF 81/0
97 NYG6A065A 160K x 10 160K x 10 0x001E—Ox03FF 81/0
98 NYG6B0O05A 16K x 10 16K x 10 0x001E—Ox03FF 16 1/0
99 NY6BO0OSA 24K x 10 24K x 10 0x001E—Ox03FF 16 1/0
100 NY6BO11A 32K x 10 32K x 10 0x001E—Ox03FF 16 1/0
101 NY6BO18A 48K x 10 48K x 10 0x001E—Ox03FF 16 1/0
102 NYG6B025A 64K x 10 64K x 10 0x001E—Ox03FF 16 1/0
103 NY6BO35A 88K x 10 88K x 10 0x001E—Ox03FF 16 1/0
104 NY6B045A 112K x 10 112K x 10 0x001E—Ox03FF 16 1/0

81 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual
No. IC type PROG ROM size | DATA ROM size| Reserved Memory (I/O Pin Count
105 NYBBO55A 136K x 10 136K x 10 0x001E—Ox03FF 16 1/0
106 NY6BO65A 160K x 10 160K x 10 0x001E—Ox03FF 16 1/0
107 NY6B075A 184K x 10 184K x 10 0x001E—Ox03FF 16 1/0
108 NY6BO85A 208K x 10 208K x 10 0x001E—Ox03FF 16 1/0
109 NY6C112A 272K x 10 272K x 10 0x001E—Ox03FF 24 1/0
110 NY6C132A 320K x 10 320K x 10 0x001E—Ox03FF 24 1/0
111 NYG6C158A 384K x 10 384K x 10 0x001E—Ox03FF 24 1/0
112 NY6C185A 448K x 10 448K x 10 0x001E—Ox03FF 24 1/0
113 NYG6C225A 544K x 10 544K x 10 0x001E—Ox03FF 24 1/0
114 NY6C265A 640K x 10 640K x 10 0x001E—Ox03FF 24 1/0
115 NYG6C305A 736K x 10 736K x 10 0x001E—Ox03FF 24 1/0
116 NYG6C345A 832K x 10 832K x 10 0x001E—Ox03FF 24 1/0
117 NY7AO004A 16K x 12 16K x 12 0x0010 — Ox03FF 81/0
118 NY7AO007A 24K x 12 24K x 12 0x0010 — Ox03FF 81/0
119 NY7AO010A 32K x 12 32K x 12 0x0010 — Ox03FF 81/0
120 NY7AO016A 48K x 12 48K x 12 0x0010 — Ox03FF 81/0
121 NY7A021A 64K x 12 64K x 12 0x0010 — Ox03FF 81/0
122 NY7A032A 96K x 12 96K x 12 0x0010 — OxO3FF 81/0
123 NY7A043A 128K x 12 128K x 12 0x0010 — Ox03FF 81/0
124 NY7A054A 160K x 12 160K x 12 0x0010 — OxO3FF 81/0
125 NY7AO065A 192K x 12 192K x 12 0x0010 — Ox03FF 81/0
126 NY7BO0O07A 24K x 12 24K x 12 0x0010 — Ox03FF 16 1/0
127 NY7B010A 32K x 12 32K x 12 0x0010 — OxO3FF 16 1/0
128 NY7B016A 48K x 12 48K x 12 0x0010 — Ox03FF 16 1/0
129 NY7B021A 64K x 12 64K x 12 0x0010 — OxO3FF 16 1/0
130 NY7B032A 96K x 12 96K x 12 0x0010 — Ox03FF 16 1/0
131 NY7B043A 128K x 12 128K x 12 0x0010 — Ox03FF 16 1/0
132 NY7BO054A 160K x 12 160K x 12 0x0010 — Ox03FF 16 1/0
133 NY7B065A 192K x 12 192K x 12 0x0010 — OxO3FF 16 1/0
134 NY7B076A 224K x 12 224K x 12 0x0010 — Ox03FF 16 1/0
135 NY7B087A 256K x 12 256K x 12 0x0010 — OxO3FF 16 1/0
136 NY7CO010A 32K x 12 32K x 12 0x0010 — Ox03FF 24 1/0
137 NY7CO016A 48K x 12 48K x 12 0x0010 — OxO3FF 24 1/0
138 NY7C021A 64K x 12 64K x 12 0x0010 — Ox03FF 24 1/0
139 NY7C032A 96K x 12 96K x 12 0x0010 — OxO3FF 24 1/0

82 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual
No. IC type PROG ROM size | DATA ROM size| Reserved Memory (I/O Pin Count
140 NY7CO043A 128K x 12 128K x 12 0x0010 — OxO3FF 24 1/0
141 NY7CO054A 160K x 12 160K x 12 0x0010 — Ox03FF 24 1/0
142 NY7CO065A 192K x 12 192K x 12 0x0010 — OxO3FF 24 1/0
143 NY7CO76A 224K x 12 224K x 12 0x0010 — Ox03FF 24 1/0
144 NY7CO87A 256K x 12 256K x 12 0x0010 — Ox03FF 24 1/0
145 NY7C110A 328K x 12 328K x 12 0x0010 — Ox03FF 24 1/0
146 NY7C130A 384K x 12 384K x 12 0x0010 — OxO3FF 24 1/0
147 NY7C150A 448K x 12 448K x 12 0x0010 — Ox03FF 24 1/0
148 NY7C170A 512K x 12 512K x 12 0x0010 — OxO3FF 24 1/0
149 NY7C220A 656K x 12 656K x 12 0x0010 — Ox03FF 24 1/0
150 NY7C260A 768K x 12 768K x 12 0x0010 — OxO3FF 24 1/0
151 NY7C305A 896K x 12 896K x 12 0x0010 — Ox03FF 24 1/0
152 NY7C345A 1024K x 12 1024K x 12 0x0010 — OxO3FF 24 1/0
153 NY8A050D 512 x 14 512x 14 - 61/0
154 NY8AO50E 512 x 14 512 x 14 - 61/0
155 NY8AOS50E1 512x 14 512x 14 - 61/0
156 NY8A051B 1K x 14 1K x 14 - 61/0
157 NY8A051D 1K x 14 1K x 14 - 61/0
158 NY8AO51F 1K x 14 1K x 14 - 61/0
159 NY8BA051G 1K x 14 1K x 14 - 61/0
160 NY8AO051H 1K x 14 1K x 14 - 61/0
161 NY8AO051H1 1K x 14 1K x 14 - 61/0
162 NY8A051J 1K x 14 1K x 14 - 61/0
163 NY8A051K 1K x 14 1K x 14 - 61/0
164 NY8AO051L 1K x 14 1K x 14 - 61/0
165 NY8AO052E 1.5K x 14 1.5K x 14 - 14 1/0
166 NY8A053B 1K x 14 1K x 14 - 121/0
167 NY8A053D 1K x 14 1K x 14 - 121/0
168 NY8AO53E 1K x 14 1K x 14 - 121/0
169 NY8A054A 2K x 14 2K x 14 - 14 1/0
170 NY8A054D 2K x 14 2K x 14 - 14 1/0
171 NY8AO54E 2K x 14 2K x 14 - 14 1/0
172 NYS8AO054E1 2K x 14 2K x 14 - 14 1/0
173 NY8AO0S6A 1K x 14 1K x 14 - 16 1/0
174 NY8BAES1F 1K x 14 1K x 14 - 61/0

83 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual
No. IC type PROG ROM size | DATA ROM size| Reserved Memory (I/O Pin Count
175 NY8B060D 1K x 14 1K x 14 - 61/0
176 NY8BO61E 1.25K x 14 1.25K x 14 - 14 1/0
177 NY8B062A 2K x 14 2K x 14 - 14 1/0
178 NY8B062B 2K x 14 2K x 14 - 14 1/0
179 NY8B062D 2K x 14 2K x 14 - 14 1/0
180 NY8BO062E 2K x 14 2K x 14 - 14 1/0
181 NY8BO062F 2K x 14 2K x 14 - 14 1/0
182 NY8BO062F1 2K x 14 2K x 14 - 14 1/0
183 NY8BO72A 2K x 14 2K x 14 - 18 1/0
184 NY8BE62D 2K x 14 2K x 14 - 14 1/0
185 NY8BM61D 2K x 14 2K x 14 - 14 1/0
186 NY8BM62D 2K x 14 2K x 14 - 14 1/0
187 NY8BM72A 2K x 14 2K x 14 - 18 1/0
188 NY8BM84A 4K x 16 4K x 16 - 221/0
189 NY8F1141 2K x 16 2K x 16 14 1/0
190 NY8F1241 2K x 16 2K x 16 14 1/0
191 NY8F2481 4K x 16 4K x 16 - 221/0
192 NY8TEG4A 4K x 14 4K x 14 - 18 1/0
193 NY8TMS52D 2K x 14 2K x 14 - 61/0
194 NYS8LPO5A 5K'x 8 5K'x 8 0x0000~0x07FF 16 1/0
195 NY8LPOSA 8K x 8 8K x 8 0x0000~0x07FF 241/0
196 NYS8LP10A 17K x 8 17K x 8 0x0000~0x07FF 16 1/0
197 NY8LP11A 17K x 8 17K x 8 0x0000~0x07FF 16 1/0
198 NY9TO01A 4K x 10 4K x 10 0x001F — OxO1FF 41/0
199 NY9TO04A 8Kx 10 8K x 10 0x001F — Ox01FF 81/0
200 NY9TOO8A 12K x 10 12K x 10 0x001F — OxO1FF 16 1/0
201 NY9TO16A 16K x 10 16K x 10 0x001F — Ox01FF 24 1/0
202 NY9UPO1A 768 x 10 768 x 10 0x0040 — 0x004F 131/0
203 NYQUPO02A 1280 x 10 1280 x 10 0x0020 — 0x004F 131/0
204 NY9UPO8SA 8K x 10 8K x 10 0x0020 — 0x004F 131/0
205 NY9U032B 32K x 10 32K x 10 0x001F — Ox03FF 16 1/0
206 NYOU064B 64K x 10 64K x 10 0x001F — OxO3FF 16 1/0

84 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

Appendix B - Glossary

To provide a common frame of reference, this glossary defines the terms that are used in this document. This

glossary contains definitions for the terms used in the NYASM.

B.1

Terms

Nyquest MCU
Nyquest MCU refers to the NY4/NYS/NY7 micro-controller family.

Application
A set of software and hardware developed by the user, usually designed to be a product controlled by a

Nyquest micro-controller.

Assemble

The act of executing the NYASM macro assembler to translate source code to machine code.

Binary File
An NYASM single executable output.

Build

A function that recompiles all the source files for an application.

Control Directives

Control directives permit sections of conditionally assembled code.

Data Directives
Data Directives are those that control the allocation of memory and provide a way to refer to data items

symbolically, that is, by meaningful names.

Data RAM

General purpose file registers from RAM on the MCU device being emulated.

Directives
Directives provide control of the assembler’s operation by telling NYASM how to treat mnemonics, define
data, and format the listing file. Directives make coding easier and provide custom output according to

specific needs.

Expressions

Expressions are used in the operand field of the source line and may contain constants, symbols, or any
combination of constants and symbols separated by arithmetic operators.

Forward reference

Forward reference means to apply variable or function before defining data. NYASM doesn’t allow the
forward reference command, e.g., the undefined Macro can not be applied, the undefined constant can

not be applied.

85 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

Identifier

A function or variable name.

Initialized Data
Data which is defined with an initial value. In C, int myVar=5; defines a variable which will reside in an

initialized data section.

Listing Directives
Listing Directives are those directives that control the NYASM listing file format. They allow the

specification of base-numbering system, reserved memory access and other listing control.

Listing File
A listing file is an ASCII text file that shows the machine code generated for each assembly instruction,

NYASM directive, or macro encountered in a source file.

Local Label
A local label is one that is defined with the LOCAL directive. These labels are particular to a given
instance of the macro’s instantiation. In other words, the symbols and labels that are declared as local are

purged from the symbol table when the ENDM macro is encountered.

Macro

A macro is a collection of assembler instructions that are included in the assembly code when the macro
name is encountered in the source code. Macros must be defined before they are used; forward
references to macros are not allowed. All statements following the MACRO directive are part of the macro
definition. Labels used within the macro must be local to the macro so the macro can be called

repetitively.

Macro Directives

These directives control the execution and data allocation within macro body definitions.

Mnemonics

These are instructions that are translated directly into machine code. These are used to perform
arithmetic and logical operations on data residing in program or data memory of a micro-controller. They
also have the ability to move data in and out of registers and memory as well as change the flow of

program execution. Also referred to as Opcodes.

NYASM
Nyquest Technology Corporation Limited’s MCU assembler.

Nesting Depth

Macros can be nested to 16 levels deep (default). Maximum depth is 256.

Operators
Operators are arithmetic symbols, like the plus sign ‘+’ and the minus sign ‘-, that are used when forming

well-defined expressions. Each operator has an assigned precedence.

86 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

PC
Any IBM PC compatible Personal Computer.

PC Host
The computer running Windows XP/7/8.

Precedence
Precedence is the concept that some elements of an expression get evaluated before others. Operators

of the same precedence are evaluated from left to right.

Program Memory

Memory in the emulator or simulator containing the downloaded target application firmware.

Project

A set of source files and instructions to build the binary code for an application.

Radix
Radix is the base-numbering system that the assembler uses when evaluating expressions. The default
radix is decimal (base 10). You can change the default radix and override the default radix with certain

radix override operators.

RAM

Random Access Memory (Data Memory).

Raw Data

The binary representation of code or data.

Recursion
This is the concept that a macro, having been defined, can call itself. Great care should be taken when
writing recursive macros; it is easy to get caught in an infinite loop where there will be no exit from the

recursion.

ROM

Read-only Memory.

Source Code

Source code consists of Nyquest MCU instructions and NYASM directives and macros that will be
translated into machine code. This code is suitable for use by an Nyquest development system product
like NYIDE.

Source File
The ASCII text file of Nyquest MCU instructions and NYASM directives and macros (source code) that will

be translated into machine code. It is an ASCII file that can be created using any ASCII text editor.

Stack
An area in data memory where function arguments, return values, local variables, and return addresses

are stored.

87 Ver. 5.6 2025/11/25

(\) Nyquest NYASM User Manual

Symbol

A symbol is a general purpose mechanism for describing the various pieces which comprise a program.

These pieces include function names, variable names, file names, macro names, etc.

Un-initialized Data

Data which is defined without an initial value. In C, int myVar.

NOTES: Information contained in this publication regarding device applications and the like is intended for
suggestion only and may be superseded by updates. No representation or warranty is given and no
liability is assumed by Nyquest Technology Corporation Limited with respect to the accuracy or use of
such information, or infringement of patents or other intellectual property rights arising from such use
or otherwise. Use of Nyquest’s products as critical components in life support systems is not
authorized except with express written approval by Nyquest. No licenses are conveyed, implicitly or
otherwise, under any intellectual property rights. The Nyquest logo and name are registered
trademarks of Nyquest Technology Corporation Limited and other countries. All rights reserved. All

other trademarks mentioned herein are the property of their respective companies.

2008 Nyquest Technology Corporation Limited
All rights reserved. © 2008 Nyquest Technology Corporation Limited. Published in TAIWAN.

88 Ver. 5.6 2025/11/25

	1 General Information
	1.1 About This Guide
	1.1.1 Document Layout
	1.1.2 Conventions Used in This Guide
	1.1.3 Updates

	1.2 Recommended Reading
	1.3 The Nyquest Internet Web Site
	1.4 Development Systems Customer Notification Service
	1.5 Customer Support

	2 NYASM Preview
	2.1 System Requirements
	2.2 What NYASM Does
	2.3 Compatibility Issues

	3 NYASM Installation and Getting Started
	3.1 Installation
	3.2 Overview of Assembler
	3.3 Assembler Input/Output Files
	3.3.1 Source Code Format (.ASM)
	3.3.2 Listing File Format (.LST)
	3.3.3 Error File Format (.ERR)
	3.3.4 Hex File Formats (.HEX)
	3.3.5 Symbol and Debug File Format (.DBG)

	4 Using NYASM with Windows
	4.1 User Interface
	4.2 Introduction

	5 Directive Language
	5.1 Highlights
	5.2 NY4, NY5, NY7, NY8A, NY9
	5.2.1 Directive Summary
	5.2.2 BREAK – Jump Out Point in a Logic Block
	5.2.3 CASE – Define an Option Item of SWITCH
	5.2.4 CBLOCK – Define a Block of Constants
	5.2.5 CONSTANT – Declare Symbol Constant
	5.2.6 CONTINUE – Ignore Statements Afterward and Start Next Loop
	5.2.7 DEFAULT – Define an Unconditional Item of SWITCH
	5.2.8 #DEFINE – Define a Text Substitution Label
	5.2.9 DW – Declare Data of One Word
	5.2.10 DWS – Encode Text as 16-bit Data
	5.2.11 ELSE – Begin Alternative Assembly Block to IF
	5.2.12 END – End Program Block
	5.2.13 ENDC – End an Automatic Constant Block
	5.2.14 ENDFOR – End a For Loop
	5.2.15 ENDIF – End Conditional Assembly Block
	5.2.16 ENDM – End a Macro Definition
	5.2.17 ENDS – Coding Convenience
	5.2.18 ENDSW – End a Switch Block
	5.2.19 ENDW – End a While Loop
	5.2.20 EQU – Define an Assembler Constant
	5.2.21 ERROR – Issue an Error Message
	5.2.22 EXITM – Exit from a Macro
	5.2.23 EXPAND – Expand Macro Listing
	5.2.24 EXTERN – External Symbol
	5.2.25 FOR – Perform For Loop While Iterator Meets the Condition
	5.2.26 IF – Begin Conditionally Assembled Code Block
	5.2.27 IFDEF – Execute If Symbol has Been Defined
	5.2.28 IFNDEF – Execute If Symbol has not Been Defined
	5.2.29 #INCLUDATA – Include Binary Data File
	5.2.30 #INCLUDE – Include Additional Source File
	5.2.31 LINES – Reset Line Count per Listing Page
	5.2.32 LIST – Listing Options
	5.2.33 LOCAL – Declare Local Macro Variable
	5.2.34 MACRO – Declare Macro Definition
	5.2.35 MAXMACRODEPTH – Define Maximum Macro Depth
	5.2.36 MESSG – Create User Defined Message
	5.2.37 NEWPAGE – Insert Listing Page Eject
	5.2.38 NOEXPAND – Turn off Macro Expansion
	5.2.39 ORG – Set Program Origin
	5.2.40 ORGALIGN – Set Program Origin With Address Alignment
	5.2.41 RADIX – Specify Default Radix
	5.2.42 REPEAT – Begin a Repeat-Until Loop Block Definition
	5.2.43 SUBTITLE – Specify Program Subtitle
	5.2.44 SWITCH – Begin Conditional Switching Assembly Block
	5.2.45 TITLE – Specify Program Title
	5.2.46 #UNDEFINE – Delete a Substitution Label
	5.2.47 UNTIL – Perform Loop Until Condition is True
	5.2.48 VARIABLE – Declare Symbol Variable
	5.2.49 WHILE – Perform Loop While Condition is True
	5.2.50 .ALIGN2 – AlignThe Staring Address of Program

	5.3 NY8L
	5.3.1 Directive Summary
	5.3.2 .And – Boolean AND Operation
	5.3.3 .BANKBYTE – Access Bank Byte
	5.3.4 .BITAND - Bit AND Operation
	5.3.5 .BITNOT – Bit NOT Operation
	5.3.6 .BITOR – Bit XOR Operation
	5.3.7 .BITXOR – Bit XOR Operation
	5.3.8 .BLANK – Check Blank Symbol
	5.3.9 .BYTE – Low Byte
	5.3.10 .CEIL – Unconditional Carry
	5.3.11 .CODE - The abbreviation of .segment “code”
	5.3.12 .DATA - The abbreviation of .segment “data”
	5.3.13 .DEFINE – Definition
	5.3.14 .DEFINED – Check Whether the Symbol Is Defined
	5.3.15 .ELSE – Begin Alternative Assembly Block to IF
	5.3.16 .ELSEIF –Begin Alternative Assembly Block After IF And The Specified Condition Is True
	5.3.17 .ENDIF – End Conditional Assembly Block
	5.3.18 .ENDMACRO – End Macro Defined Block
	5.3.19 .ENDREPEAT – End the Repeating Scope
	5.3.20 .ENDSCOPE – End Variable Scope
	5.3.21 .ENDSTRUCT – End Structure Block
	5.3.22 .EQU – Define an Assembler Constant
	5.3.23 .ERROR –Issue A Compilation Error Message
	5.3.24 .EXPORT – Export Symbol
	5.3.25 .EXPORTZP – Export Zero Page Symbol
	5.3.26 .EXTERN – Declare External Symbol
	5.3.27 .EXTERNZP – Declare Global Zero Page Symbol
	5.3.28 .FLOOR – Unconditional Round Down
	5.3.29 .HIBYTE – High Byte
	5.3.30 .IF – Conditional Assembly
	5.3.31 .IFBLANK – Conditional Assembly If Parameter Is Blank
	5.3.32 .IFDEF – Conditional Assembly If Defined
	5.3.33 .IFNBLANK – Conditional Assembly If Parameter Isn’t Blank
	5.3.34 .IFNDEF – Conditional Assembly If Undefined
	5.3.35 .IMPORT – Import Symbol
	5.3.36 .IMPORTZP – Import Zero Page Symbol
	5.3.37 .INCBIN – Insert Binary File
	5.3.38 .INCLUDE – Include File
	5.3.39 .LOBYTE – Low Byte
	5.3.40 .LOCAL – Declare Local Macro Variable
	5.3.41 .MACRO – Declare Macro
	5.3.42 .MOD – Remainder Operation
	5.3.43 .NOT – Boolean Reverse Operation
	5.3.44 .OR – Boolean Or Operation
	5.3.45 .ORG – Set Program Origin
	5.3.46 .REPEAT - Begin a Repeat-Until Loop Block Definition
	5.3.47 .RES – Reserve Space
	5.3.48 .ROUND – Round
	5.3.49 .SCOPE – Start Variable Scope
	5.3.50 .SEGMENT – Program Segment
	5.3.51 .SETCPU – Setup CPU
	5.3.52 .SHL – Left Shift
	5.3.53 .SHR – Right Shift
	5.3.54 .STRING – Access String
	5.3.55 .WORD - Word
	5.3.56 .XOR – Boolean Exclusive Or

	Directive
	Description
	Syntax

	OPTION
	Directive
	Description
	Syntax

	6 Macro Language
	6.1 Macro Syntax for NY4, NY5, NY7, NY8A, NY9
	6.1.1 Macro Directives
	6.1.2 Text Substitution
	6.1.3 Macro Usage

	6.2 Macro Syntax for NY8L
	6.2.1 MACRO Syntax
	6.2.2 Macro Directives
	6.2.3 Text Substitution
	6.2.4 Macro Usage

	7 Expression Syntax and Operation
	7.1 NY4, NY5, NY7, NY8A, NY9
	7.1.1 Numeric Constants and Radix
	7.1.2 High/Mid/Low
	7.1.3 Increment/Decrement (++/--)

	7.2 NY8L
	7.2.1 Numeric constants and Radix
	7.2.2 High/Mid/Low

	8 Revision History
	Appendix A - Quick Reference
	A.1 NYASM Quick Reference
	A.2 MCU List

	Directive
	Description
	Syntax
	DATA
	MACRO

	OPTION
	Appendix B - Glossary
	B.1 Terms

