

U
ser M

anual

NYQUEST TECHNOLOGY CO., Ltd. reserves the right to change this document without prior notice. Information provided by NYQUEST is believed to be accurate and

reliable. However, NYQUEST makes no warranty for any errors which may appear in this document. Contact NYQUEST to obtain the latest version of device specifications
before placing your orders. No responsibility is assumed by NYQUEST for any infringement of patent or other rights of third parties which may result from its use. In addition,

NYQUEST products are not authorized for use as critical components in life support devices/systems or aviation devices/systems, where a malfunction or failure of the

product may reasonably be expected to result in significant injury to the user, without the express written approval of NYQUEST.

Version 5.6
Nov. 25, 2025

Nyquest MCU Assembler

NYASM

NYASM User Manual

Ver. 5.6 2025/11/25 2

Table of Contents

1 General Information .. 6

1.1 About This Guide ... 6
1.1.1 Document Layout ... 6
1.1.2 Conventions Used in This Guide ... 6
1.1.3 Updates .. 7

1.2 Recommended Reading .. 7

1.3 The Nyquest Internet Web Site .. 7

1.4 Development Systems Customer Notification Service ... 8
1.5 Customer Support ... 8

2 NYASM Preview ... 9

2.1 System Requirements ... 9
2.2 What NYASM Does ... 9

2.3 Compatibility Issues ... 9

3 NYASM Installation and Getting Started .. 10

3.1 Installation ..10
3.2 Overview of Assembler ...10

3.3 Assembler Input/Output Files ... 11
3.3.1 Source Code Format (.ASM) ... 11
3.3.2 Listing File Format (.LST) .. 13
3.3.3 Error File Format (.ERR) .. 14
3.3.4 Hex File Formats (.HEX) .. 14
3.3.5 Symbol and Debug File Format (.DBG) ... 14

4 Using NYASM with Windows .. 15

4.1 User Interface ...15

4.2 Introduction...16

5 Directive Language ... 17

5.1 Highlights..17

5.2 NY4, NY5, NY7, NY8A, NY9 ..17
5.2.1 Directive Summary .. 17
5.2.2 BREAK – Jump Out Point in a Logic Block ... 19
5.2.3 CASE – Define an Option Item of SWITCH ... 20
5.2.4 CBLOCK – Define a Block of Constants ... 21
5.2.5 CONSTANT – Declare Symbol Constant .. 21
5.2.6 CONTINUE – Ignore Statements Afterward and Start Next Loop ... 22
5.2.7 DEFAULT – Define an Unconditional Item of SWITCH ... 23
5.2.8 #DEFINE – Define a Text Substitution Label ... 23

NYASM User Manual

Ver. 5.6 2025/11/25 3

5.2.9 DW – Declare Data of One Word .. 24
5.2.10 DWS – Encode Text as 16-bit Data ... 24
5.2.11 ELSE – Begin Alternative Assembly Block to IF .. 24
5.2.12 END – End Program Block .. 25
5.2.13 ENDC – End an Automatic Constant Block ... 25
5.2.14 ENDFOR – End a For Loop ... 25
5.2.15 ENDIF – End Conditional Assembly Block .. 26
5.2.16 ENDM – End a Macro Definition .. 26
5.2.17 ENDS – Coding Convenience ... 26
5.2.18 ENDSW – End a Switch Block .. 27
5.2.19 ENDW – End a While Loop ... 27
5.2.20 EQU – Define an Assembler Constant .. 27
5.2.21 ERROR – Issue an Error Message ... 27
5.2.22 EXITM – Exit from a Macro .. 28
5.2.23 EXPAND – Expand Macro Listing .. 28
5.2.24 EXTERN – External Symbol .. 29
5.2.25 FOR – Perform For Loop While Iterator Meets the Condition ... 29
5.2.26 IF – Begin Conditionally Assembled Code Block... 29
5.2.27 IFDEF – Execute If Symbol has Been Defined .. 30
5.2.28 IFNDEF – Execute If Symbol has not Been Defined ... 30
5.2.29 #INCLUDATA – Include Binary Data File ... 31
5.2.30 #INCLUDE – Include Additional Source File ... 31
5.2.31 LINES – Reset Line Count per Listing Page ... 32
5.2.32 LIST – Listing Options ... 32
5.2.33 LOCAL – Declare Local Macro Variable .. 32
5.2.34 MACRO – Declare Macro Definition .. 33
5.2.35 MAXMACRODEPTH – Define Maximum Macro Depth .. 34
5.2.36 MESSG – Create User Defined Message ... 34
5.2.37 NEWPAGE – Insert Listing Page Eject .. 34
5.2.38 NOEXPAND – Turn off Macro Expansion .. 35
5.2.39 ORG – Set Program Origin .. 35
5.2.40 ORGALIGN – Set Program Origin With Address Alignment.. 35
5.2.41 RADIX – Specify Default Radix ... 35
5.2.42 REPEAT – Begin a Repeat-Until Loop Block Definition .. 36
5.2.43 SUBTITLE – Specify Program Subtitle .. 36
5.2.44 SWITCH – Begin Conditional Switching Assembly Block ... 37
5.2.45 TITLE – Specify Program Title ... 37
5.2.46 #UNDEFINE – Delete a Substitution Label ... 38
5.2.47 UNTIL – Perform Loop Until Condition is True .. 38
5.2.48 VARIABLE – Declare Symbol Variable .. 39
5.2.49 WHILE – Perform Loop While Condition is True ... 39
5.2.50 .ALIGN2 – AlignThe Staring Address of Program .. 40

5.3 NY8L ..40
5.3.1 Directive Summary .. 40
5.3.2 .And – Boolean AND Operation ... 43

NYASM User Manual

Ver. 5.6 2025/11/25 4

5.3.3 .BANKBYTE – Access Bank Byte .. 43
5.3.4 .BITAND - Bit AND Operation.. 43
5.3.5 .BITNOT – Bit NOT Operation ... 43
5.3.6 .BITOR – Bit XOR Operation ... 44
5.3.7 .BITXOR – Bit XOR Operation... 44
5.3.8 .BLANK – Check Blank Symbol ... 44
5.3.9 .BYTE – Low Byte .. 45
5.3.10 .CEIL – Unconditional Carry .. 45
5.3.11 .CODE - The abbreviation of .segment “code” .. 45
5.3.12 .DATA - The abbreviation of .segment “data”... 45
5.3.13 .DEFINE – Definition .. 46
5.3.14 .DEFINED – Check Whether the Symbol Is Defined ... 46
5.3.15 .ELSE – Begin Alternative Assembly Block to IF ... 47
5.3.16 .ELSEIF –Begin Alternative Assembly Block After IF And The Specified Condition Is True 47
5.3.17 .ENDIF – End Conditional Assembly Block ... 48
5.3.18 .ENDMACRO – End Macro Defined Block .. 48
5.3.19 .ENDREPEAT – End the Repeating Scope ... 48
5.3.20 .ENDSCOPE – End Variable Scope .. 49
5.3.21 .ENDSTRUCT – End Structure Block .. 49
5.3.22 .EQU – Define an Assembler Constant ... 49
5.3.23 .ERROR –Issue A Compilation Error Message ... 49
5.3.24 .EXPORT – Export Symbol .. 50
5.3.25 .EXPORTZP – Export Zero Page Symbol ... 50
5.3.26 .EXTERN – Declare External Symbol ... 50
5.3.27 .EXTERNZP – Declare Global Zero Page Symbol .. 51
5.3.28 .FLOOR – Unconditional Round Down .. 51
5.3.29 .HIBYTE – High Byte ... 51
5.3.30 .IF – Conditional Assembly .. 52
5.3.31 .IFBLANK – Conditional Assembly If Parameter Is Blank ... 52
5.3.32 .IFDEF – Conditional Assembly If Defined .. 52
5.3.33 .IFNBLANK – Conditional Assembly If Parameter Isn’t Blank ... 53
5.3.34 .IFNDEF – Conditional Assembly If Undefined .. 53
5.3.35 .IMPORT – Import Symbol ... 53
5.3.36 .IMPORTZP – Import Zero Page Symbol .. 53
5.3.37 .INCBIN – Insert Binary File ... 54
5.3.38 .INCLUDE – Include File .. 54
5.3.39 .LOBYTE – Low Byte ... 55
5.3.40 .LOCAL – Declare Local Macro Variable ... 55
5.3.41 .MACRO – Declare Macro ... 55
5.3.42 .MOD – Remainder Operation ... 56
5.3.43 .NOT – Boolean Reverse Operation .. 56
5.3.44 .OR – Boolean Or Operation ... 56
5.3.45 .ORG – Set Program Origin ... 56
5.3.46 .REPEAT - Begin a Repeat-Until Loop Block Definition .. 57
5.3.47 .RES – Reserve Space .. 57

NYASM User Manual

Ver. 5.6 2025/11/25 5

5.3.48 .ROUND – Round .. 57
5.3.49 .SCOPE – Start Variable Scope .. 57
5.3.50 .SEGMENT – Program Segment ... 58
5.3.51 .SETCPU – Setup CPU ... 58
5.3.52 .SHL – Left Shift ... 59
5.3.53 .SHR – Right Shift .. 59
5.3.54 .STRING – Access String .. 59
5.3.55 .WORD - Word ... 59
5.3.56 .XOR – Boolean Exclusive Or ... 60

6 Macro Language .. 61

6.1 Macro Syntax for NY4, NY5, NY7, NY8A, NY9 ...61
6.1.1 Macro Directives .. 61
6.1.2 Text Substitution .. 61
6.1.3 Macro Usage ... 62

6.2 Macro Syntax for NY8L ...62
6.2.1 MACRO Syntax.. 62
6.2.2 Macro Directives .. 63
6.2.3 Text Substitution .. 63
6.2.4 Macro Usage ... 64

7 Expression Syntax and Operation ... 65

7.1 NY4, NY5, NY7, NY8A, NY9 ..65
7.1.1 Numeric Constants and Radix ... 65
7.1.2 High/Mid/Low ... 67
7.1.3 Increment/Decrement (++/--) ... 67

7.2 NY8L ..68
7.2.1 Numeric constants and Radix .. 68
7.2.2 High/Mid/Low ... 69

8 Revision History .. 70

Appendix A - Quick Reference .. 74

A.1 NYASM Quick Reference ...74

A.2 MCU List ..79

Appendix B - Glossary ... 85

B.1 Terms ...85

NYASM User Manual

Ver. 5.6 2025/11/25 6

1 General Information
This first chapter contains general information that will be useful to know before working with NYASM.

1.1 About This Guide

1.1.1 Document Layout

This document describes how to use NYASM to develop code for Nyquest micro-controller

applications. The user’s guide layout is as follows.

2. NYASM Preview: Defines NYASM and describes what it does and how it works with other tools.

3. NYASM Installation and Getting Started: Describes how to install NYASM and gives an overview of

operation.

4. Using NYASM with Windows: Describes how to use NYASM with Microsoft Windows via a Windows

shell interface.

5. Directive Language: Describes the NYASM programming language including statements, operators,

variables, and other elements.

6. Macro Language: Describes how to use NYASM’s built-in macro processor.

7. Expression Syntax and Operation: Provides guidelines for using complex expressions in NYASM

source files.

Appendix A - Quick Reference: Lists Nyquest MCU device instruction sets, NYASM quick reference,

and 4-bit MCU list.

Appendix B - NYASM Errors/Warnings: Contains a descriptive list of the errors, and warnings

generated by NYASM.

1.1.2 Conventions Used in This Guide

This manual uses the following documentation conventions:

Directive Description Syntax

Arial Font User-entered code or sample code. #define BITWIDTH

Angle Brackets: <> Variables. Text user supplied. <label>, <exp>

Curly Brackets and
Pipe Character: { | }

Choice of mutually exclusive
arguments. an OR selection error level { 0 | 1 }

Square Brackets: [] Could be omit.
[<label>] db

<expr>[,<expr>,...,<expr>]

Ellipses: ...
Used to imply, but not show,
additional text that is not relevant to
the example.

List “list_option”, ...,“list_option”

0xnn Represents a hexadecimal number
where n is a hexadecimal digit. 0xFF, 0x3B

NYASM User Manual

Ver. 5.6 2025/11/25 7

1.1.3 Updates

All documentation becomes dated, and this user’s manual is no exception. Since NYASM, and other

Nyquest tools are constantly evolving to meet customer needs, some actual dialogs and/or tool

descriptions may differ from those in this document. Please refer to our web site to obtain the latest

documentation available.

1.2 Recommended Reading

This user’s guide describes how to use NYASM. The user may also find the data sheets for specific

micro-controller devices informative in developing firmware.

• RevisionHistory.TXT
For the latest information on using NYASM, read the REVISIONHISTORY files (ASCII text files)

included with the NYASM software. The REVISIONHISTORY files contain update information that may

not be included in this document.

• Interface

In-text Bold Characters Designates a button OK, Cancel.

Uppercase Characters in Angle Brackets: < > Delimiters for special keys. <TAB>, <ESC>.

• Microsoft Windows Manuals

This manual assumes that users are familiar with Microsoft Windows operating system. Many excellent

references exist for this software program, and should be consulted for general operation of Windows.

1.3 The Nyquest Internet Web Site

Nyquest provides on-line support on the Nyquest World Wide Web (WWW) site. The web site is used by

Nyquest as a means to make files and information easily available to customers. To view the site, the user

must have access to the Internet and a web browser, such as Microsoft® Internet Explorer®.

• Connecting to the Nyquest Internet Web Site

The Nyquest website is available by using your favorite Internet browser to attach to:

http://www.nyquest.com.tw

The website provides a variety of services. Users may download files for the latest Development Tools,

Data Sheets, Application Notes, User’s Guides, and Articles.

Other data available for consideration is:

• Latest Nyquest Press Releases.

• Product Information.

http://www.nyquest.com.tw/

NYASM User Manual

Ver. 5.6 2025/11/25 8

1.4 Development Systems Customer Notification Service

Nyquest provided the customer notification service to help our customers keep current on Nyquest

products with the least amount of effort. You will receive email notification whenever we change, update,

revise or have errata related to that product family or development tool.

1.5 Customer Support

Users of Nyquest products can receive assistance through several channels:

• Distributor or Representative.

• Field Application Engineer (FAE).

• Hot line.

Customers should call their distributor, representative, or field application engineer (FAE) for support.

NYASM User Manual

Ver. 5.6 2025/11/25 9

2 NYASM Preview
NYASM Windows-based PC application provides a platform for developing assembly language code for

Nyquest’s microcontroller (MCU) families

Content:

2.1 System Requirements

2.2 What NYASM Does

2.3 Compatibility Issues

2.1 System Requirements

• Pentium 1.3GMHz CPU or above, Microsoft Windows operating system (7, 8, 10, 11).

• At least 1G of DRAM.

• At least 2G free space on hard disk.

• A display card and monitor with resolution of 1366x768 or higher.

• Microsoft .Net Framework 4.0 installed.

2.2 What NYASM Does

NYASM provides a universal solution for developing assembly code for all of Nyquest’s 8-bit and 4-bit

micro-controllers. Notable features include:

• All MCU Instruction Sets.

• Window Interfaces.

• Rich Directive Language.

2.3 Compatibility Issues

NYASM is compatible with all Nyquest development systems currently in production. This includes

Q-Code and NYIDE. NYASM supports a clean and consistent method of specifying radix (see Chapter 4).

You are encouraged to develop new code using the methods described within this document.

NYASM User Manual

Ver. 5.6 2025/11/25 10

3 NYASM Installation and Getting Started
This chapter provides instructions for installation of NYASM on your system, and an overview of the assembler

(NYASM).

Content:

3.1 Installation

3.2 Overview of Assembler

3.3 Assembler Input/Output Files

3.1 Installation

Current version of NYASM is for Windows XP/7/8 version, NYASM.EXE has a Windows GUI interface.

NYASM.EXE may be used with Windows XP/7/8. You can obtain NYASM from our website or sales.

NYASM will be in a zip file.

To install:

• Create a directory in which to place the files.

• Unzip the NYASM files using either WinZip®.

3.2 Overview of Assembler

NYASM can be used to generate binary code that can be executed directly by a micro-controller. Binary

code is the default output from NYASM. This process is shown in Figure 3.1. When a source file is

assembled in this manner, all values used in the source file must be defined within that source file, or in

files that have been explicitly included. If assembly proceeds without errors, a BIN file will be generated,

containing the executable machine code for the target device. This file can then be used in conjunction

with a device programmer to program the micro-controller for function verification.

Figure 3.1: Generating binary code for function verification

NYASM Writer System MCU
Demo
Board

CODE.ASM CODE.BIN

NYASM User Manual

Ver. 5.6 2025/11/25 11

3.3 Assembler Input/Output Files

These are the default file extensions used by NYASM and the associated utility functions.

Table 3.1: NYASM Default Extensions

Extension Purpose

.ASM
Default source file extension input to NYASM:

<source_name>.ASM

.LST
Default output extension for listing files generated by NYASM:

<source_name>.LST

.ERR
Output extension from NYASM for Warning/error files:

<source_name>.ERR

.BIN

Output extension from NYASM for the machine code of an application program in binary

form:

<source_name>.BIN

.HEX
Output extension from NYASM for representing BIN file in hexadecimal form:

<source_name>.HEX

.DBG

Output extension from NYASM for the symbol and debug file. This file is created for

AMCIDE debug mode:

<source_name>.DBG

3.3.1 Source Code Format (.ASM)

The source code file may be created using any ASCII text file editor. It should conform to the following

basic guidelines. Each line of the source file may contain up to four types of information:

• labels

• mnemonics

• operands

• comments

The order and position of these are important. Labels must start in the first non-blank position of a line.

Mnemonics may start in the first non-blank position of a line, or follow a label. Operands follow the

mnemonic. Comments may follow the operands, mnemonics or labels. The maximum column width is

255 characters. A colon must separate the label and the mnemonic, one or more spaces, or tabs must

separate the mnemonic and its operand(s). Multiple operands must be separated by a comma. For

example:

NYASM User Manual

Ver. 5.6 2025/11/25 12

For example:

Sample NYASM Source Code (Shows multiple operands)

; sample NYQUEST assembler source code

;

list p= ny5c640b , c=off ,r=hex

ORG_OFF equ 0x30

ORG_SUBOFF equ 0x00

SUBPPTRADDR equ ORG_SUBOFF+ORG_OFF

#include "2102.h"

org 0x10

mvma 0x20

jmp start

org 0x30

start:

mvma 0x30

mvat 0x12

end

3.3.1.1 Labels

A label must start in the first non-blank position of a line. It must be followed by a colon (:). Labels

must begin with an alphabetic character or an under bar (_) and may contain alphanumeric

characters, the under bar and the ‘@’ symbol. By default they are case insensitive, but case

sensitivity may be enabled through the command option of NYASM.

3.3.1.2 Mnemonics

Assembler instruction mnemonics, assembler directives and macro calls can begin in any column. If

there is a label on the same line, instructions must be separated from that label by a colon, or by one

or more spaces or tabs.

3.3.1.3 Operands

Operands must be separated from mnemonics by one or more spaces, or tabs. Multiple operands

must be separated by commas.

3.3.1.4 Comments

NYASM treats anything after a semicolon as a comment. All characters following the semicolon are

ignored through the end of the line.

NYASM User Manual

Ver. 5.6 2025/11/25 13

3.3.2 Listing File Format (.LST)

For example:

Sample NYASM Listing File (.LST)
 Nyquest Technology Co., Ltd.

 NYASM 1.00 Copyright(c) Nyquest Technology Co., Ltd. [Build:Dec 20 2007]

 File=E:\MyProjects\Build\asm\NYASM\Sample\NYASMSample.asm

 Date=2007/12/20, 06:22:21 pm

 ADDR OPCODE/VALUE LINE TAG SOURCE STATEMENT PAGE:1

 0-0001 ; sample NYQUEST assembler source cod

 0-0002 ;

 0-0003 list p=ny5c640b , c=off ,r=hex

 000000030 0-0004 ORG_OFF equ 0x30

 000000000 0-0005 ORG_SUBOFF equ 0x00

 000000030 0-0006 SUBPPTRADDR equ ORG_SUBOFF+ORG_OFF

 0-0007 #include "2102.h"

 1-0001 ;

 000000010 0-0008 org 0x10

 000010 D020 0-0009 mvma 0x20

 000011 6030 0-0010 jmp start

 000000030 0-0011 org 0x30

 000000030 0-0012 start:

 000030 D030 0-0013 mvma 0x30

 000031 0112 0-0014 mvat 0x12

 0-0015 end

NYASM 1.00 Copyright(c) Nyquest Technology Co., Ltd. [Build:Dec 20 2007]

File=E:\MyProjects\Build\asm\NYASM\Sample\NYASMSample.asm

Date=2007/12/20, 06:22:21 pm

 SYMBOL TABLE TYPE VALUE PAGE:2

 __NY5C640B Constant 00000001

 ORG_OFF Constant 00000030

 ORG_SUBOFF Constant 00000000

 Start Label 00000030

 SUBPPTRADDR Constant 00000030

NYASM User Manual

Ver. 5.6 2025/11/25 14

 SOURCE FILE TABLE

 000 E:\MyProjects\Build\asm\NYASM\Sample\NYASMSample.asm

 001 E:\MyProjects\Build\asm\NYASM\Sample\2102.h

 PROCESSOR = NY5C640B (4 bits)

 PROGRAM ROM = 0x00000000 - 0x000FFFFF

 DATA ROM = 0x00000000 - 0x000FFFFF

 SRAM / SFR = 0x00000000 - 0x000000FF

The listing file format produced by NYASM is straightforward:

The product name and version, the assembly date and time, and the page number appear at the top

of every page. The first column of numbers contains the base address in memory where the code will

be placed. The second column displays the 32-bit value of any symbols created with the EQU,

VARIABLE, CONSTANT, or CBLOCK directives. The third column is reserved for the machine

instruction. This is the code that will be executed by the Nyquest MCU. The fourth column lists the

associated source file line number for this line. The remainder of the line is reserved for the source

code line that generated the machine code. Errors, warnings, and messages are embedded between

the source lines, and pertain to the following source line. The symbol table lists all symbols defined in

the program.

3.3.3 Error File Format (.ERR)

NYASM by default generates an error file. This file can be useful when debugging your code. The

format of the messages in the error file is:

[<type>] <file> (<line>) <number> <description>

For example:

[Error] C:\PROG.ASM 7 (133) w001: Symbol not previously defined (start).

Appendix B describes the error messages generated by NYASM.

3.3.4 Hex File Formats (.HEX)

NYASM is capable of producing different hex file formats.

3.3.5 Symbol and Debug File Format (.DBG)

When NYASM is evoked by NYIDE, it produces a DBG file for use in ICE debugging of code.

NYASM User Manual

Ver. 5.6 2025/11/25 15

4 Using NYASM with Windows
This chapter is dedicated to describing the version of NYASM for Windows. This version may be run

stand-alone, or within other Nyquest development tools. e.g. Q-Code and NYIDE.

4.1 User Interface

NYASM for Windows provides a graphical interface for setting assembler options. It is invoked by

executing NYASM.EXE while in Windows.

Figure 4.1: NYASM Windows User Interface

Select a source file by dragging it into the window or using the Add button. Set the various options as

described below. Then click Build to assemble the source file.

Note: When NYASM for Windows is invoked through other Nyquest development tools, the options

screen is not available. Options are passed from specific tools in the form of arguments.

Table 4.1: Assembler Options

Option Usage

Processor Override any source file processor settings. Please refer to A.2 MCU List.

NYASM User Manual

Ver. 5.6 2025/11/25 16

4.2 Introduction

NYASM provides UI with graphics and text mode. User can call NYASM in text mode by command script

and then make execution automation. The executable file of user interface is NYASM.exe of installation

directory. The available parameters are listed below.

Table 4.2: Available options

Option Usage

/o=<file> Import the specified asm file

/p=<icbody> Replace the source file processor settings. Please refer to A.2 MCU List.

/f=<file> Specify hardware configuration block file.

/bypass By pass graphic interface. End program after completing configuration.

/unlockrsvmem Allow the programming right in reserved memory area.

/nocfgblk Ignore the assembly time check for the existence of configuration block file

NYASM User Manual

Ver. 5.6 2025/11/25 17

5 Directive Language
This chapter describes the NYASM directive language. Directives are assembler commands that appear in the

source code but are not translated directly into opcodes. They are used to control the assembler: its input,

output, and data allocation.

5.1 Highlights

There are five basic types of directives provided by NYASM:

• Control Directives – Control directives permit sections of conditionally assembled code.

• Data Directives – Data Directives are those that control the allocation of memory and provide a way to

refer to data items symbolically, that is, by meaningful names.

• Listing Directives – Listing Directives are those directives that control the NYASM listing file format. They

allow the specification of titles, pagination, and other listing control.

• Macro Directives – These directives control the execution and data allocation within macro body

definitions.

5.2 NY4, NY5, NY7, NY8A, NY9

5.2.1 Directive Summary

Table 5.1 contains a summary of directives supported by NYASM. The remainder of this chapter is

dedicated to providing a detailed description of the directives supported by NYASM.

Table 5.1: Directive Summary

Directive Description Syntax

BREAK
Escape from a FOR, WHILE or
REPEAT-UNTIL loop, or Jump to the
end of a SWITCH block.

break [<Boolean expression>]

CASE
Part of a SWITCH block; must use
CASE with SWITCH.

switch <expression>
case <expression 1>[,<expression 2>]

<statements>
CBLOCK Define a block of constants. cblock [<expr>]

CONSTANT Declare symbol constant. constant
<label>[=<expr>,...,<label>[=<expr>]]

CONTINUE

Jump to the begin of FOR, WHILE or
REPEAT-UNTIL loop that contains
CONTINUE directive.

All statements behind CONTINUE in a
loop are ignored.

continue [<Boolean expression>]

DEFAULT
Part of a SWITCH block; must use
DEFAULT with SWITCH.
Begin default assembly block to

default
<statements>

NYASM User Manual

Ver. 5.6 2025/11/25 18

Directive Description Syntax

SWITCH.

#DEFINE Define a text substitution label. #define <name> [<value>]
#define <name> [<arg>,...,<arg>]

DW Declare data of one word. [<label>] dw <expr>[,<expr>,...,<expr>]

DWS Encode Text as 16-bit Data [<label>:] dws “<string>”

ELSE
Begin alternative assembly
block to IF.

else
 <statements>

END End program block. end

ENDC End an automatic constant block. endc

ENDFOR End a FOR loop. endfor

ENDIF End conditional assembly block. endif

ENDM End a macro definition. endm

ENDS
Directive for coding convenience:
presenting ENDFOR, ENDW,
ENDSW, ENDIF.

ends

ENDSW
End conditional switching assembly
block.

endsw

ENDW End a WHILE loop. endw

EQU Define an assemble constant. <label> equ <expr>

ERROR Issue an error message. error "<text_string>"

EXITM Exit from a macro. exitm

EXPAND Expand macro listing. expand

EXTERN External symbol. extern <label>

FOR Perform counting loop FOR. for <iterator> = <expr1> to <expr2> [step
<expr3>]

IF
Begin conditionally assembled code
block. if <expr>

IFDEF Execute if symbol has been defined. ifdef <label>

IFNDEF
Execute If symbol has not been
defined. ifndef <label>

#INCLUDATA Include binary data file. #includata "<data_file>" [,<address>]

#INCLUDE Include additional source file. #include "<include_file>"

LINES Re-declare line-per-page. lines <value>

LIST Listing options. list [<list_option>,...,<list_option>]

LOCAL Declare local macro variable. local <label>[,<label>]

MACRO Declare macro definition. <label> macro [<arg>,...,<arg>]
MAXMACRO

DEPTH
Setup the maximum depth of macro
expansion.

Maxmacrodepth [=] <expr>

MESSG Create user defined message. messg "<message_text>"

NYASM User Manual

Ver. 5.6 2025/11/25 19

Directive Description Syntax

NEWPAGE Re-declare line-per-page. Newpage <value>

NOEXPAND Turn off macro expansion. noexpand

ORG Set program origin. [<label>:] org <expr>

ORGALIGN Set program origin with alignment. [<label>:] orgalign <expr>, <align>

RADIX Specify default radix. radix <default_radix>

REPEAT Begin at-least-one-time loop.
Repeat
 <statements>
until <Boolean expression>

SUBTITLE Specify program subtitle. subtitle "<sub_text>"

SWITCH
Begin conditional switching assembly
block. switch <expr>

TITLE Specify program title. title "<title_text>"

#UNDEFINE Delete a substitution label. #undefine <label>

UNTIL
End at-least-one-time loop if condition
is true.

Repeat
 <statements>
until <Boolean expression>

VARIABLE Declare symbol variable. variable
<label>[=<expr>,...,<label>[=<expr>]]

WHILE Perform loop WHILE condition is true. while <expr>

.ALIGN2 Align the starting address of the
program. .align2 <expr>, <bit>

5.2.2 BREAK – Jump Out Point in a Logic Block

 Syntax

Syntax 1:

<for|while|repeat – loop begin>

 [<statements>]

 break [<Boolean expr>]

 [<statements>]

<for|while|repeat – loop end>

Syntax 2:

switch <expr>

 case <expr1>[,<expr2>]

 [<statements>]

 break [<Boolean expr>]

 [<statements>]

 [<case-statements>]

Endsw

NYASM User Manual

Ver. 5.6 2025/11/25 20

 Description

Set the logical point in a program which will escape the running flow from a WHILE, FOR, or

REPEAT-UNIT loop. break also is used in switch block to achieve the purpose of switching

among conditional branches.

 Example

Example 1:

for i =0 to 4

nop

break i==2

halt

endfor

Example 2:

a=1

switch a

case 1, 2

nop

break

case 1

halt

endsw

 See Also

FOR, WHILE, REPEAT, SWITCH

5.2.3 CASE – Define an Option Item of SWITCH

 Syntax

switch <expr>

 case <expr1>[,<expr2>]

 [<statements>]

 :

 :

 default

 [<statements>]

endsw

 Description

Define an option of selection statement. Once the <exprN> matched one of the conditions after

case, running flow will branch into that case item. case is part of a switch block, and must be

used with switch.

NYASM User Manual

Ver. 5.6 2025/11/25 21

 Example

a=1

switch a

 case 1, 2

 nop

 break

 case 1

 halt

endsw

 See Also

DEFAULT, SWITCH

5.2.4 CBLOCK – Define a Block of Constants

 Syntax

cblock [<expr>]

[<label>[=<increment>][,<label>[=<increment>]]]

endc

 Description

Define a list of named constants. Each <label> is assigned a value of one higher than the

previous <label>. The purpose of this directive is to assign address offsets to many labels. The

list of names end when an ENDC directive is encountered. <expr> indicates the starting value for

the first name in the block. If no expression is found, the first name will receive a value one higher

than the final name in the previous CBLOCK. If the first CBLOCK in the source file has no <expr>,

assigned values start with zero. If <increment> is specified, then the next <label> is assigned the

value of <increment> higher than the previous <label>. Multiple names may be given on a line,

separated by commas. cblock is useful for defining constants in program and data memory.

 Example

cblock 0x20 ; name_1 will be assigned 20

name_1, name_2 ; name_2 is 21

name_3 =0x30, name_4 ; name_4 is assigned 30,name_4 is assigned 31.

endc

 See Also

ENDC

5.2.5 CONSTANT – Declare Symbol Constant

 Syntax

constant <label>=<expr> [...,<label>=<expr>]

NYASM User Manual

Ver. 5.6 2025/11/25 22

 Description
Creates symbols for use in NYASM expressions. Constants may not be reset after having once

been initialized, and the expression must be fully resolvable at the time of the assignment. This is

the principal difference between symbols declared as CONSTANT and those declared as

VARIABLE. Otherwise, constants and variables may be used interchangeably in expressions.

 Example

variable RecLength=64 ; Set Default RecLength

constant BufLength=512 ; Init BufLength

 : ; RecLength may

: ; be reset later

: ; in RecLength=128

: ;

constant MaxMem=RecLength+BufLength ;CalcMaxMem

 See Also

VARIABLE

5.2.6 CONTINUE – Ignore Statements Afterward and Start Next Loop

 Syntax

<for|while|repeat – loop begin>

 [<statements>]

 continue [<Boolean expr>]

 [<statements>]

<for|while|repeat – loop end>

 Description

Set a logical point in a program which will ignore statements after continue in WHILE, FOR, or

REPEAT-UNITL looping block, and jump to the begin of looping block containing continue

directive.

 Example

for i =0 to 4

 nop

 continue i==2

 halt

endfor

 See Also

FOR, WHILE, REPEAT

NYASM User Manual

Ver. 5.6 2025/11/25 23

5.2.7 DEFAULT – Define an Unconditional Item of SWITCH

 Syntax

switch <expr>

 case <expr1>[,<expr2>]

 [<statements>]

 :

 :

 default

 [<statements>]

 endsw

 Description

Define an unconditional item of selection statement. Once no condition after case items matched

<expr>, running flow will go into default item. default is part of a switch block, and must be used

with switch.

 Example

a=1

switch a

case 1, 2

 nop

 break

 case 1

 halt

 default

nop

endsw

 See Also

CASE, SWITCH

5.2.8 #DEFINE – Define a Text Substitution Label

 Syntax

#define <name> [<string>]

 Description

This directive defines a text substitution string. Wherever <name> is encountered in the

assembly code, <string> will be substituted. Using the directive with no <string> causes a

definition of <name> to be noted internally and may be tested for using the IFDEF directive.

 Example

#define length 20

NYASM User Manual

Ver. 5.6 2025/11/25 24

#define control 0x19, 7

:

:

srbr control ; set bit 7 in 0x19

 See Also

#UNDEFINE, IFDEF, IFNDEF

5.2.9 DW – Declare Data of One Word

 Syntax

[<label>:] dw <expr>[,<expr>,...,<expr>]

 Description

Reserve program memory words for data, initializing that space to specific values. Values are

stored into successive memory locations and the location counter is incremented by one.

Expressions may be literal strings and are stored as described in the DATA directive.

 Example

dw 39, (d_list*2+d_offset)

dw diagbase-1

5.2.10 DWS – Encode Text as 16-bit Data

 Syntax

[<label>:] dws “<string>”

 Descriptions

Reserve a block of program memory for text data. Characters are grouped in pairs and stored in

16-bit ROM using little-endian format. Unlike DW, which stores each character separately, DWS

encodes two characters together as one 16-bit entry.

This command is supported only on 16-bit ICs.

This command is is available starting from NYASM 2.80.

 Example

dws “abcdeAB”

;; ROM -> 6261 6463 4165 0042

5.2.11 ELSE – Begin Alternative Assembly Block to IF

 Syntax

else

 Description

Used in conjunction with an IF directive to provide an alternative code block should the IF

NYASM User Manual

Ver. 5.6 2025/11/25 25

evaluate to false. ELSE may be used inside a regular program block or macro.

 Example

speed macro rate

if rate < 50

dw slow

else

dw fast

endif

endm

 See Also

ENDIF, IF

5.2.12 END – End Program Block

 Syntax

end

 Description

Indicates the end of the program.

 Example

list p= ny4b095a

: ; executable code

: ;

end ; end of instructions

5.2.13 ENDC – End an Automatic Constant Block

 Syntax

endc

 Description

ENDC terminates the end of a CBLOCK list. It must be supplied to terminate the list.

 See Also

CBLOCK

5.2.14 ENDFOR – End a For Loop

 Syntax

endfor

 Description

ENDFOR terminates a FOR loop. As long as the looping counter specified by the FOR directive

NYASM User Manual

Ver. 5.6 2025/11/25 26

went over the conditional boundary, the source code between the FOR directive and the

ENDFOR directive will be repeatedly expanded in the assembly source code stream. This

directive may be used inside a regular program block or macro.

 See Also

FOR

5.2.15 ENDIF – End Conditional Assembly Block

 Syntax

endif

 Description

This directive marks the end of a conditional assembly block. ENDIF may be used inside a

regular program block or macro.

 See Also

ELSE, IF

5.2.16 ENDM – End a Macro Definition

 Syntax

endm

 Description

Terminates a macro definition begun with MACRO.

 Example

make_table macro arg1, arg2

 dw arg1, 0 ; null terminate table name

 res arg2 ; reserve storage

endm

 See Also

MACRO, EXITM

5.2.17 ENDS – Coding Convenience

 Syntax

ends

 Description

Present ENDFOR, ENDW, ENDSW, ENDIF

 See Also

ENDFOR, ENDW, ENDSW, ENDIF

NYASM User Manual

Ver. 5.6 2025/11/25 27

5.2.18 ENDSW – End a Switch Block

 Syntax

endsw

 Description

Terminates a SWITCH block definition begun with SWITCH.

 Example

See the example for SWITCH

 See Also

SWITCH

5.2.19 ENDW – End a While Loop

 Syntax

endw

 Description

ENDW terminates a WHILE loop. As long as the condition specified by the WHILE directive

remains true, the source code between the WHILE directive and the ENDW directive will be

repeatedly expanded in the assembly source code stream. This directive may be used inside a

regular program block or macro.

 Example

See the example for WHILE

 See Also

WHILE

5.2.20 EQU – Define an Assembler Constant

 Syntax

<label> equ <expr>

 Description

The value of <expr> is assigned to <label>.

 Example

four equ 4 ; assigned the numeric value of 4 to label four

5.2.21 ERROR – Issue an Error Message

 Syntax

error "<text_string>"

 Description

NYASM User Manual

Ver. 5.6 2025/11/25 28

<text_string> is printed in a format identical to any NYASM error message. <text_string> may be

from 1 to 80 characters.

 Example

error_checking macro arg1

 if arg1 >= 55 ; if arg is out of range

 error "error_checking-01 arg out of range"

 endif

endm

 See Also

MESSG

5.2.22 EXITM – Exit from a Macro

 Syntax

exitm

 Description

Force immediate return from macro expansion during assembly. The effect is the same as if an

ENDM directive had been encountered. This directive can only be used in NY5+ and NY6.

 Example

test macro filereg

 if filereg == 1 ; check for valid file

 exitm

 else

 error "bad file assignment"

 endif

endm

 See Also

ENDM MACRO

5.2.23 EXPAND – Expand Macro Listing

 Syntax

expand

 Description

Expand all macros in the listing file. This directive is roughly equivalent to the “Macro Expansion”

assembler option, but may be disabled by the occurrence of a subsequent NOEXPAND.

 See Also

MACRO, NOEXPAND

NYASM User Manual

Ver. 5.6 2025/11/25 29

5.2.24 EXTERN – External Symbol

 Syntax

extern <label>

 Description

Define the symbol as a public symbol when it needs to be accessed across different modules.

This is required when, for example, two independently compiled assembly files call functions

defined in each other. This feature is only available in NY8 C language projects.

5.2.25 FOR – Perform For Loop While Iterator Meets the Condition

 Syntax

for <iterator>=<expr1> to <expr2> [step <expr3>]

:

:

endfor

 Description

The lines between the FOR and the ENDFOR are assembled as long as <iterator> evaluates in

the range of <expr1> to <expr2>. A FOR loop can be repeated a maximum of 256 times.

 Example

for I=0 to 5

 nop

endfor

 See Also

ENDFOR

5.2.26 IF – Begin Conditionally Assembled Code Block

 Syntax

if <expr>

 Description

Begin execution of a conditional assembly block. If <expr> evaluates to true, the code

immediately following the IF will assemble. Otherwise, subsequent code is skipped until an ELSE

directive or an ENDIF directive is encountered. An expression that evaluates to zero is

considered logically FALSE. An expression that evaluates to any other value is considered

logically TRUE. The IF and WHILE directives operate on the logical value of an expression. A

relational TRUE expression is guaranteed to return a nonzero value, FALSE a value of zero.

 Example

NYASM User Manual

Ver. 5.6 2025/11/25 30

if version == 100; check current version

 : ;executable cod

 : ;executable cod

else

 : ;executable cod

 : ;executable cod

endif

 See Also

ELSE, ENDIF

5.2.27 IFDEF – Execute If Symbol has Been Defined

 Syntax

ifdef <label>

 Description

If <label> has been previously defined, usually by issuing a #DEFINE directive or by setting the

value on the NYASM command line, the conditional path is taken. Assembly will continue until a

matching ELSE or ENDIF directive is encountered.

 Example

#define testing 1 ; set testing "on"

:

:

ifdef testing

<execute test code> ; this path would be executed.

Endif

 See Also

#DEFINE, ELSE, ENDIF, IFNDEF, #UNDEFINE

5.2.28 IFNDEF – Execute If Symbol has not Been Defined

 Syntax

ifndef <label>

 Description

If <label> has not been previously defined, or has been undefined by issuing an #UNDEFINE

directive, then the code following the directive will be assembled. Assembly will be enabled or

disabled until the next matching ELSE or ENDIF directive is encountered.

 Example

NYASM User Manual

Ver. 5.6 2025/11/25 31

#define testing1 ; set testing on

:

:

#undefine testing1 ; set testing off

ifndef testing ; if not in testing mode

: ; execute this path

:

endif

end ; end of source

 See Also

#DEFINE, ELSE, ENDIF, IFDEF, #UNDEFINE

5.2.29 #INCLUDATA – Include Binary Data File

 Syntax

#includata "<binary_data_file>"[, address]

 Description

The specified file is read in as binary data. The effect is the same as if the entire text of the

included file were inserted into the file at the location of the #includata statement. If the includes

data file needs to be inserted at a specific location, users can specify the location by address.

#includata must be the last statement before end directive. <binary_data_file> must be enclosed

in quotes. If a fully qualified path is specified, only that path will be searched. Otherwise, the

search path is: source file directory. <binary_data_file> will becomes a label after assembled.

 Example

#includata "c:\music\s02.sog", 0x2000 ; insert data file at 0x2000

5.2.30 #INCLUDE – Include Additional Source File

 Syntax

#include "<include_file>"

 Description

The specified file is read in as source code. The effect is the same as if the entire text of the

included file were inserted into the file at the location of the include statement. Upon end-of-file,

source code assembly will resume from the original source file. <include_file> must be enclosed

in quotes. If a fully qualified path is specified, only that path will be searched. Otherwise, the

search path is: source file directory.

 Example

#include "c:\sys\sysdefs.inc" ; system defs

#include “regs.h” ; register defs

NYASM User Manual

Ver. 5.6 2025/11/25 32

5.2.31 LINES – Reset Line Count per Listing Page

 Syntax

lines <value>

 Description

Set the maximum line count per page when generating listing file.

 See Also

NEWPAGE

5.2.32 LIST – Listing Options

 Syntax

list [<list_option>, ..., <list_option>]

 Description

Occurring on a line by itself, the LIST directive has the effect of turning listing output on, if it had

been previously turned off. Otherwise, one of the following list options can be supplied to control

the assembly process or format the listing file:

Table 5.2: List Directive Options

OPTION DEFAULT DESCRIPTION

c Off
Enable/Disable case sensitivity
c=on Enable
c=off Disable

p None

Set the processor type:
/p=<processor_type>
where <processor_type> is an Nyquest MCU device. For example,
NY5A005A.

unlockrsv
mem

Locked
/unlockrsvmem
For 4-bit MCU only. Allow the programming right in reserved memory
area.

nocfgblk
Configuration

Block
required

/nocfgblk
For 4-bit MCU only. Ignore the assembly time check for the existence
of configuration block file.

 Example

list p=ny5c640b, c = off

5.2.33 LOCAL – Declare Local Macro Variable

 Syntax

local <label>[,<label>...]

NYASM User Manual

Ver. 5.6 2025/11/25 33

 Description

Declares that the specified data elements are to be considered in local context to the macro.

<label> may be identical to another label declared outside the macro definition; there will be no

conflict between the two. If the macro is called recursively, each invocation will have its own local

copy.

 Example

<main code segment>

:

:

len equ 10 ; global version

size equ 20 ; note that a local variable may now be created and modified

test macro size

local len, label ; local len and label

len set size ; modify local len

label res len ; reserve buffer

len set len-20 ;

endm ; end macro

 See Also

ENDM, MACRO

5.2.34 MACRO – Declare Macro Definition

 Syntax

<label> macro [<arg>, ..., <arg>]

 Description

A macro is a sequence of instructions that can be inserted in the assembly source code by using

a single macro call. The macro must first be defined, then it can be referred to in subsequent

source code. A macro can call another macro, or may call itself recursively.

 Example
Read macro device, buffer, count
mvma device
mvma buffer
mvma count
endm
:
:
read 1,2,3

 See Also

ELSE, ENDIF, ENDM, EXITM, IF, LOCAL

NYASM User Manual

Ver. 5.6 2025/11/25 34

5.2.35 MAXMACRODEPTH – Define Maximum Macro Depth

 Syntax

maxmacrodepth[=]<expr>

 Description

MAXMACODEPTH defines the maximum valid macro depth to <expr>. <expr> must be less than

or equal to the maximum depth 256. MAXMACODEPTH can be used more than once in a source

file. Each use redefines the maximum valid macro depth.

 Example

list p=ny5c640b

maxmacrodepth 0x10

:

:

5.2.36 MESSG – Create User Defined Message

 Syntax

messg "<message_text>"

 Description

Causes an informational message to be printed in the listing file. Issuing a MESSG directive does

not set any error return codes.

 Example

mssg_macro macro

messg "mssg_macro-001 invoked without argument"

endm

 See Also

ERROR

5.2.37 NEWPAGE – Insert Listing Page Eject

 Syntax

newpage <value>

 Description

Inserts a page eject into the listing file.

 See Also

LINE

NYASM User Manual

Ver. 5.6 2025/11/25 35

5.2.38 NOEXPAND – Turn off Macro Expansion

 Syntax

noexpand

 Description

Turns off macro expansion in the listing file.

 See Also

EXPAND

5.2.39 ORG – Set Program Origin

 Syntax

[<label>:] org <expr>

 Description

Set the program origin for subsequent code at the address defined in <expr>. If <label> is

specified, it will be given the value of the <expr>. If no ORG is specified, code generation will

begin at address zero.

 Example

int_1: org 0x20

; Vector 20 code goes here

int_2: org int_1+0x10

; Vector 30 code goes here

5.2.40 ORGALIGN – Set Program Origin With Address Alignment

 Syntax

[<label>:] orgalign <expr>,<align>

 Description

Set the program origin for subsequent code at the address defined in <expr>|<align>. If <label>

is specified, it will be given the value of the <expr>|<align>. If no ORGALIGN is specified, code

generation will begin at address zero.

 Example

int_1: orgalign 0x20,0x7

 See Also

.align2

5.2.41 RADIX – Specify Default Radix

 Syntax

radix <default_radix>

NYASM User Manual

Ver. 5.6 2025/11/25 36

 Description

Sets the default radix for data expressions. The default radix is dec. Valid radix values are: hex,

dec, oct, or bin.

 Example

radix dec

 See Also

LIST

5.2.42 REPEAT – Begin a Repeat-Until Loop Block Definition

 Syntax

repeat
:
:
until <expr>

 Description

Begin a REPEAT-UNTIL block definition.

 Example

test_mac macro count

variable i

i = 0

repeat

i += 1

until i > count

endm

:

:

End

 See Also

WHILE, UNTIL

5.2.43 SUBTITLE – Specify Program Subtitle

 Syntax

subtitle "<sub_text>"

 Description

<sub_text> is an ASCII string enclosed in double quotes, 60 characters or less in length. This

directive establishes a second program header line for use as a subtitle in the listing output.

 Example

NYASM User Manual

Ver. 5.6 2025/11/25 37

subtitle "diagnostic section"

 See Also

TITLE

5.2.44 SWITCH – Begin Conditional Switching Assembly Block

 Syntax

switch <expr>

 case <expr1>[,<expr2>]

 [<statements>]

 case < exprM>[,<exprN>]

 :

 :

 default

 [<statements>]

endsw

 Description

Begin execution of a conditional switching assembly block. If <expr> evaluates to matching any

<exprX> after cases , the code immediately following that matched case will assemble.

Otherwise, subsequent code is skipped until a default directive or an ENDSW directive is

encountered.

 Example

a=1

switch a

 case 1, 2

 nop

 break

 case 1

 halt

 default

endsw

 See Also

BREAK, DEFAULT

5.2.45 TITLE – Specify Program Title

 Syntax

title "<title_text>"

 Description

NYASM User Manual

Ver. 5.6 2025/11/25 38

<title_text> is a printable ASCII string enclosed in double quotes. It must be 60 characters or less.

This directive establishes the text to be used in the top line of each page in the listing file.

 Example

title "operational code, rev 5.0"

 See Also

SUBTITLE

5.2.46 #UNDEFINE – Delete a Substitution Label

 Syntax

#undefine <label>

 Description

<label> is an identifier previously defined with the #DEFINE directive. It must be a valid NYASM

label. The symbol named is removed from the symbol table.

 Example
#define length 20
:
:
#undefine length

 See Also

#DEFINE, IFDEF, #INCLUDE, IFNDEF

5.2.47 UNTIL – Perform Loop Until Condition is True

 Syntax

repeat

:

:

until <expr>

 Description

The lines between the REPEAT and the UNTIL are assembled at least once, and as long as

<expr> evaluates to FALSE. A REPEAT loop can be repeated at maximum of 256 times.

 Example

test_mac macro count

 variable i

 i = 0

 repeat

 i += 1

 until i < count

NYASM User Manual

Ver. 5.6 2025/11/25 39

endm

:

:

end

 See Also

WHILE, REPEAT

5.2.48 VARIABLE – Declare Symbol Variable

 Syntax

variable <label>[=<expr>][,<label>[=<expr>]...]

 Description

Creates symbols for use in NYASM expressions. Variables and constants may be used

interchangeably in expressions. Note that variable values cannot be updated within an operand.

You must place variable assignments, increments, and decrements on separate lines.

 Example

Please refer to the example given for the CONSTANT directive.

 See Also

CONSTANT

5.2.49 WHILE – Perform Loop While Condition is True

 Syntax

while <expr>

:

:

endw

 Description

The lines between the WHILE and the ENDW are assembled as long as <expr> evaluates to

TRUE. An expression that evaluates to zero is considered logically FALSE. An expression that

evaluates to any other value is considered logically TRUE. A relational TRUE expression is

guaranteed to return a non-zero value; FALSE a value of zero. A WHILE loop can contain at

most 100 lines and be repeated a maximum of 256 times.

 Example

test_mac macro count

variable i

i = 0

while i < count

movlw i

NYASM User Manual

Ver. 5.6 2025/11/25 40

i += 1

endw

endm

start

test_mac 5

end

 See Also

ENDW IF

5.2.50 .ALIGN2 – AlignThe Staring Address of Program

 Syntax

.align2 <expr>, <bit>

 Description

Align the starting address of program with <bit>, the low bit of address is <expr>.

When the demand addresses are 0x41, 0x141, 0x241, 0x341, and so on, user could use .align2

to align the 8 bits, and set the low bit as 0x41. But the ORGALIGN command cannot specify the

number of bit, 0xC1will still be generated.

This command only be supported nu NY5+ and NY6

 Example

.align2 0x41, 8

 See Also

ORGALIGN

5.3 NY8L

The directives for NY8L are different from other IC series. The following are the descriptions of directives.

5.3.1 Directive Summary

Table 5.3 contains a summary of directives supported by NYASM. The remainder of this chapter is

dedicated to providing a detailed description of the directives supported by NYASM.

Table 5.3: Directive summary

Directive Description Syntax

.and Boolean and operation <expr> .and <expr>

.bankbyte Access bank byte .bankbyte(<expr>)

NYASM User Manual

Ver. 5.6 2025/11/25 41

Directive Description Syntax

.bitand Bit and operation <expr> .bitand <expr>

.bitnot Bit not operation .bitnot <expr>

.bitor Bit or operation <expr> .bitor <expr>

.bitxor Bit xor operation <expr> .bitxor <expr>

.blank Check blank symbol .blank(<symbol>)

.byte Low byte .byte(<expr>)

.ceil Unconditional carry .ceil(<expr>)

.code The abbreviation of .segment “code” .code

.data The abbreviation of .segment “data” .data

.define Definition .define <symbol> <expr>

.defined Check whether the symbol is defined .defined(<symbol>)

.else Begin alternative assembly block to IF .else

.elseif
Begin alternative assembly block after IF and the

specified condition is true
.elseif(<expr>)

.endif End conditional assembly block .endif

.endmacro End macro defined block .endmacro

.endrepeat End the repeating scope .endrepeat

.endscope End variable scope .endscope

.endstruct End structure block .endstruct

.equ Define constant <symbol> .equ <expr>

.error Issue an compilation error message .error “<text>”

.export Export symbol .export <symbol>

.exportzp Export zero page symbol .exportzp <symbol>

.extern Declare external symbol .extern <symbol>

.externzp Declare global zero page symbol .externzp <symbol>

.floor Uncoditional round down .floor(<expr>)

NYASM User Manual

Ver. 5.6 2025/11/25 42

Directive Description Syntax

.hibyte High byte .hibyte(<expr>)

.if Conditional assembly .if(<expr>)

.ifblank Conditional assembly if parameter is blank .ifblank(<symbol>)

.ifdef Conditional assembly If defined .ifdef(<symbol>)

.ifnblank Conditional assembly If parameter isn’t blank .ifnblank(<symbol>)

.ifndef Conditional assembly If undefined .ifndef(<symbol>)

.import Import symbol .import <symbol>

.importzp Import zero page symbol .importzp <symbol>

.incbin Insert binary file .incbin “<file>”

.include Include file .include “<file>”

.lobyte Low byte .lobyte(<expr>)

.local Declare local macro variable .local <symbol>

.macro Define macro .macro <name> <arg1>, <arg2>, …

.mod Remainder operation <expr> .mod <expr>

.not Boolean reverse operation .not <expr>

.or Boolean or operation <expr> .or <expr>

.org Set program origin .org <expr>

.repeat Begin a repeat-until loop block definition .repeat <expr>

.res Reserve space .res <expr>, <expr>

.round Round .round(<expr>)

.scope Start variable scope .scope <symbol>

.segment Program segment .segment “<symbol>”

.setcpu Setup CPU .setcpu <ic_body>

.shl Left shift <expr> .shl <expr>

.shr Right shift <expr> .shr <expr>

NYASM User Manual

Ver. 5.6 2025/11/25 43

Directive Description Syntax

.string Access string .string(<symbol>)

.word Word .word <expr>

.xor Boolean exclusive or <expr> .xor <expr>

5.3.2 .And – Boolean AND Operation

 Syntax

<symbol> = <expr1> .and <expr2>

 Description

Calculate expr1 & expr2

 Example

.if(0 .and 1)

 .error

.endif

5.3.3 .BANKBYTE – Access Bank Byte

 Syntax

.bankbyte(<expr>)

 Description

Obtain bank byte (bit 16~23) of <expr> high byte.

 Example

Label1_bank = .bankbyte(label1)

5.3.4 .BITAND - Bit AND Operation

 Syntax

<symbol> = <expr1> .and <expr2>

 Description

Calculate expr1 & expr2

 Example

Ans = 1 .bitand 3

; Ans = 1

5.3.5 .BITNOT – Bit NOT Operation

 Syntax

<symbol> = .not <expr>

NYASM User Manual

Ver. 5.6 2025/11/25 44

 Description

Reverse every bit of expr. The bit width is 32bit. If 0 is reversed the result will be 1 of 32bit.

 Example

Ans = .bitnot 3

; Ans = 0xFFFFFFFC

5.3.6 .BITOR – Bit XOR Operation

 Syntax

<symbol> = <expr1> .bitor <expr>

 Description

Calculate expr1 exclusive or expr2

 Example

Ans = 3 .bitor 6

; Ans = 7

5.3.7 .BITXOR – Bit XOR Operation

 Syntax

<symbol> = <expr1> .xor <expr2>

 Description

Calculate expr1 exclusive or with expr2

 Example

Ans = 1 .xor 3

; Ans = 2

5.3.8 .BLANK – Check Blank Symbol

 Syntax

.blank(<symbol>)

 Description

The returned Boolean value will indicate the parameter <symbol> is blank or not. It can be used

for checking the assigned parameter of caller if applied in macro.

 Example

.macro M1 arg1

 .if (.blank(arg1))

 .error

 .endif

.endmacro

NYASM User Manual

Ver. 5.6 2025/11/25 45

5.3.9 .BYTE – Low Byte

 Syntax

<symbol> = .byte(<expr>)

 Description

Access the low byte of expr.

 Example

Ans = .byte(0x1234)

; Ans = 0x34

5.3.10 .CEIL – Unconditional Carry

 Syntax

<symbol> = .ceil(<expr>)

 Description

If <expr> is a float, it will be rounded upward to the nearest integer.

 Example

Ans = .ceil(1.2)

; Ans = 2

5.3.11 .CODE - The abbreviation of .segment “code”

 Syntax

.code

 Description

Equivalent to .segment “code”

 See Also

.SEGMENT

5.3.12 .DATA - The abbreviation of .segment “data”

 Syntax

.data

 Description

Equivalent to .segment “data”

 See Also

.SEGMENT

NYASM User Manual

Ver. 5.6 2025/11/25 46

5.3.13 .DEFINE – Definition

 Syntax

.define <symbol> <expr>

 Description

Define an expression to symbol which make the symbol represented expression then.

 Example

.define AAA 1 + 2

Ans = AAA

;Ans = 3

 See Also

.DEFINED

5.3.14 .DEFINED – Check Whether the Symbol Is Defined

 Syntax

.defined(<symbol>)

 Description

If <symbol> has been defined, the outcome will be true(1) otherwise false(0). In general

conditions, use .ifdef <symbol> to check the defined symbols. However, if numbers of symbol

have to be checked if defined, a nested .ifdef is necessary. Instead, user can use .defined to

check multiple defined symbols, as below example:

.ifdef (symbol1)

 .ifdef(symbol2)

 <statements>

 .endif

.endif

It can be rewritten:

.if (.defined(symbol1) && .defined(symbol2))

 <statements>

.endif

 Example

.if (.defined(def_name))

 .error

 ; Because def_name symbol isn’t defined, the program won’t be assembled

.endif

 See Also

.DEFINE

NYASM User Manual

Ver. 5.6 2025/11/25 47

5.3.15 .ELSE – Begin Alternative Assembly Block to IF

 Syntax

.if(<expr>)

 <statements>

.else

 <statements>

.endif

 Description

Used in conjunction with an IF directive to provide an alternative path of assembly code should

the IF evaluate to false. ELSE may be used inside a regular program block or macro.

 Example

.if(0)

 .error

.else

 ; do something

.endif

 See Also

.IF, .ELSEIF

5.3.16 .ELSEIF –Begin Alternative Assembly Block After IF And The Specified Condition Is
True

 Syntax

.if(<expr>)

 <statements>

.else if (<expr>)

 <statements>

.endif

 Description

Assemble a program block if <expr> is true if the previous .if or .elseif evaluate to false.

 Example

TempVar = 1

.if(TempVar < 1)

 .error

.elseif(TempVar < 2)

 ; do something

.endif

 See Also

NYASM User Manual

Ver. 5.6 2025/11/25 48

.IF, .ELSE

5.3.17 .ENDIF – End Conditional Assembly Block

 Syntax

.if(<expr>)

 <statements>

.else if (<expr>)

 <statements>

.endif

 Description

End the conditional assembly block started by .iF.

 See Also

.IF, .ELSE, ELSEIF

5.3.18 .ENDMACRO – End Macro Defined Block

 Syntax

.macro <symbol> [<arg1> [,<arg2>…]]

 <statements>

.endmacro

 Description

End the conditional assembly block started by .macro.

 See Also

.macro

5.3.19 .ENDREPEAT – End the Repeating Scope

 Syntax

.repeat <expr>

 <statements>

.endrepeat

 Description

End the repeating block that .repeat starts off.

 See Also

.repeat

NYASM User Manual

Ver. 5.6 2025/11/25 49

5.3.20 .ENDSCOPE – End Variable Scope

 Syntax

.scope <symbol>

 <statements>

.endscope

 Description

End the repeating scope that .repeat starts off.

 See Also

.scope

5.3.21 .ENDSTRUCT – End Structure Block

 Syntax

.endstruct

 Description

the repeating scope that . struct starts off.

 See Also

.struct

5.3.22 .EQU – Define an Assembler Constant

 Syntax

<symbol> .equ <expr>

 Description

Define an constant <symbol> and assignment <expr>. <expr> must be an constant that can be

calculated at this moment. When the constant is defined, it’s value cannot be changed.

 Example

MyInteger .equ 1

5.3.23 .ERROR –Issue A Compilation Error Message

 Syntax

.error [“<message>”]

 Description

Generate an error message. The message should be quoted by a double quotation.

 Example

.error “argument out of range”

NYASM User Manual

Ver. 5.6 2025/11/25 50

5.3.24 .EXPORT – Export Symbol

 Syntax

.export <symbol>

 Description

The effect is same with .extern. The directive is established as an alias for compatibility.

 See Also

.extern

5.3.25 .EXPORTZP – Export Zero Page Symbol

 Syntax

.exportzp <symbol>

 Description

The effect is same with.externzp. The directive is established as an alias for compatibility.

 See Also

.externzp

5.3.26 .EXTERN – Declare External Symbol

 Syntax

.extern <symbol>

 Description

Declare symbol as a global symbol. The external symbol can be defined by its module or called

from other module. When numbers of module is linked, the global symbols cannot named the

same name or un-assigned.

 Example

This directive is meaningful when modules are linked. The following are explanations of this

directives in 3 different files.
;----- header.h------

.ifndef HEADER_H

.define HEADER_H

.extern GLOBAL_LABEL

.endif

;------ module1.s ------

.include “header.h”

 jmp GLOBAL_LABEL ;jump to module2

;------ module2.s -----

NYASM User Manual

Ver. 5.6 2025/11/25 51

.include “header.h”

GLOBAL_LABEL:
 nop

 See Also

.externzp

5.3.27 .EXTERNZP – Declare Global Zero Page Symbol

 Syntax

.externzp <symbol>

 Description

Declare symbol as a global symbol. When using this symbol, the zero page addressing mode

has high priority. While assigning a value, user must limit the value in the range of zero

page(0x00 ~ 0xFF). The exceeded value could result in error. The .externzp is for ROM

addressing definition , the .extern is for global subroutine definition.

 See Also

.extern

5.3.28 .FLOOR – Unconditional Round Down

 Syntax

<symbol> = .floor(<expr>)

 Description

If <expr> is a float, rounding down unconditionally.

 Example

Ans = .floor(1.2)

; Ans == 1

5.3.29 .HIBYTE – High Byte

 Syntax

<symbol> = .hibyte(<expr>)

 Description

Access a byte from high byte of expr. (bit 8~15)

 Example

Ans = .hibyte(0x1234)

; Ans == 0x12

NYASM User Manual

Ver. 5.6 2025/11/25 52

5.3.30 .IF – Conditional Assembly

 Syntax

.if(<expr>)

 <statements>

.endif

 Description

If <expr> is true then assembles this block.

<expr> is Boolean type operation , for example, a==b.

 Example

Tmp = 1 + 2 * 3

.if(Tmp != 7)

 .error

.endif

5.3.31 .IFBLANK – Conditional Assembly If Parameter Is Blank

 Syntax

.ifblank(<symbol>)

 <statements>

.endif

 Description

This directive is the abbreviation of .if(.blank(<symbol>))

 See Also

.blank

5.3.32 .IFDEF – Conditional Assembly If Defined

 Syntax

.ifdef(<symbol>)

 <statements>

.endif

 Description

If <symbol> is defined, assembling this block.

 Example

.ifdef(UNDEFINE_SYM)

 .error

.endif

 See Also

NYASM User Manual

Ver. 5.6 2025/11/25 53

.if, .defined

5.3.33 .IFNBLANK – Conditional Assembly If Parameter Isn’t Blank

 Syntax

.ifnblank(<symbol>)

 <statements>

.endif

 Description

This directive is the abbreviation of .if(! .blank(<symbol>)).

 See Also

.blank

5.3.34 .IFNDEF – Conditional Assembly If Undefined

 Syntax
.ifndef(<symbol>)
 <statements>
.endif

 Description

If <symbol> is undefined, assembling the block.

 Example
.ifdef(UNDEFINE_SYM)
 .error
.endif

 See Also

.if, .defined

5.3.35 .IMPORT – Import Symbol

 Syntax

.import <symbol>

 Description

The effect is same with .extern. The directive is established as an alias for compatibility.

 See Also

.extern

5.3.36 .IMPORTZP – Import Zero Page Symbol

 Syntax

.importzp <symbol>

NYASM User Manual

Ver. 5.6 2025/11/25 54

 Description

The effect is same with .externzp. The directive is established as an alias for compatibility.

 See Also

.externzp

5.3.37 .INCBIN – Insert Binary File

 Syntax

.incbin “<file>”

 Description

Insert the content of <file> as binary data. The .include directly uses the content of target file,

whereas .include the target file as text data. The .incbin usually is applied for binary files such as

sound and graphic files.

 Example

L_RES_Voice1:

.incbin “d:\abc\voice1.v8lx”

5.3.38 .INCLUDE – Include File

 Syntax

.include “<file>”

 Description

The <file> must be another original assembly file.The assembler will stop assembling the current

file and starting to assemble the included <file>. When the assembly of include file finished, the

assembler will return to previous position of previous file.

 Example

---- a1.h ----

.ifndef A1_H

.define A1_H

; content

.extern G_Func1

.endif

---- a1.s ----

.include “a1.h”

G_Func1:

ret

NYASM User Manual

Ver. 5.6 2025/11/25 55

5.3.39 .LOBYTE – Low Byte

 Syntax

<symbol> = .lobyte(<expr>)

 Description

Access one byte from expr low byte. (bit 0~7)

 Example

Ans = .lobyte(0x1234)

; Ans == 0x34

5.3.40 .LOCAL – Declare Local Macro Variable

 Syntax

.local <symbol>

 Description

Declares that the specified symbol is to be considered in local context to the macro. <label> may

be identical to another label declared outside the macro definition; there will be no conflict

between the two. If the macro is called recursively, each invocation will have its own local copy.

 Example

.macro M_x1
 .local LL_exit
 jmp LL_exit
LL_exit:
.endmacro

5.3.41 .MACRO – Declare Macro

 Syntax

.macro <symbol> [<arg1>, <arg2>, …]

 <statement>

.endmacro

 Description

A macro is a sequence of instructions that can be inserted in the assembly source code by using

a single macro call. The macro must first be defined, then it can be referred to in subsequent

source code. A macro can call another macro, or may call itself recursively.

 Example
.macro M_LDXY arg_value_x, arg_value_y
 LDX #arg_value_x
 LDY #arg_value_y
.endmacro

NYASM User Manual

Ver. 5.6 2025/11/25 56

5.3.42 .MOD – Remainder Operation

 Syntax

<symbol> = <expr1> .mod <expr2>

 Description

Calculate the remainder of expr1 / expr2.

 Example

ans = 5 .mod 3

; ans == 2

5.3.43 .NOT – Boolean Reverse Operation

 Syntax

<symbol> = .not <expr1>

 Description

Calculate the reverse value of expr1.

 Example

ans = .not 1

; ans == 0

5.3.44 .OR – Boolean Or Operation

 Syntax

<symbol> = <expr1> .or <expr2>

 Description

Calculate expr1 || expr2

 Example

ans = 0 .or 1

; ans == 1

5.3.45 .ORG – Set Program Origin

 Syntax

.org <expr>

 Description

Set the program origin for subsequent code at the address defined in <expr>. If <label> is

specified, it will be given the value of the <expr>. If no ORG is specified, code generation will

begin at address zero.

 Example

.org 0x7e0

NYASM User Manual

Ver. 5.6 2025/11/25 57

 .word L_TM2_INT

.code

L_TM2_INT:

 RTI

5.3.46 .REPEAT - Begin a Repeat-Until Loop Block Definition

 Syntax

.repeat <expr>

 <statement>

.endrepeat

 Description

Repeat assembly <statement>, the number of times is assigned by <expr>.

 Example
.org 0x7e0
 .word L_TM2_INT
.code
L_TM2_INT:
 RTI

5.3.47 .RES – Reserve Space

 Syntax

.res <expr1>, <expr2>

 Description

Reserve size of <expr1> in memory and fill in with the value <expr2>.

 Example

; Reserve 12 bytes of memory with value $AA

.res 12, $AA

5.3.48 .ROUND – Round

 Syntax

.round(<expr>)

 Description

Round the <expr> up to the nearest value.

5.3.49 .SCOPE – Start Variable Scope

 Syntax

.scope <symbol>

NYASM User Manual

Ver. 5.6 2025/11/25 58

 <statements>

.endscope

 Description

Start a variable scope. In the range of .scope to .endscope, the new defined symbol can be

directly accessed. When the symbol is asccessed outside, it must add a prefix word of scope.

The name of scope cannot conflict with the rest of symbols.

Example
.scope Error ; Start new scope named Error
 None = 0
 File = 1
 Parse = 2
.endscope ; close scope

LDA #Error::File ; use symbol from scope Error

 See Also

.endscope

5.3.50 .SEGMENT – Program Segment

 Syntax

.segment “<symbol>”

 Description

Switch to another program segment. The .segment directive has to be named with a string. The

available names is relative to the selected IC. Please refer to IC document.

 Example

.segment “tm0_int”

 .word L_tm0_int

.code

L_tm0_int:

 See Also

.code

5.3.51 .SETCPU – Setup CPU

 Syntax

.setcpu <symbol>

 Description

Label the IC Body in front of the file. This directive can only declare once.

 Example

.setcpu NY8L030A

NYASM User Manual

Ver. 5.6 2025/11/25 59

5.3.52 .SHL – Left Shift

 Syntax

<expr1> .shl <expr2>

 Description

Calculate the result as <expr1> left shifts by <expr2>.

 Example

Result = 2 .shl 1

; Result = 4

5.3.53 .SHR – Right Shift

 Syntax

<expr1> .shr <expr2>

 Description

Calculate the result as <expr1> right shifts by <expr2>.

 Example

Result = 2 .shr 1

; Result = 1

5.3.54 .STRING – Access String

 Syntax

.string(<symbol>)

 Description

Get the defined string of<symbol>. It’s applied to macro usually, user can get the string that it

defined.

 Example

.macro M_inc_v8lx name

 .incbin .string(name)

.endmacro

5.3.55 .WORD - Word

 Syntax

.word <expr1>

 Description

Write a data of one word (2-bit) at current location, the content is <expr1>.

 Example

.word 0x12EF

NYASM User Manual

Ver. 5.6 2025/11/25 60

5.3.56 .XOR – Boolean Exclusive Or

 Syntax

<expr1> .xor <expr2>

 Description

Calculate <expr1> exclusive or <expr2> outcome.

 Example

Result = 0 .xor 1

; Result = 1

NYASM User Manual

Ver. 5.6 2025/11/25 61

6 Macro Language
Macros are user defined sets of instructions and directives that will be evaluated in-line with the assembler

source code whenever the macro name is invoked. Macros consist of sequences of assembler instructions

and directives. They can be written to accept arguments, making them quite flexible. Their advantages are:

• Higher levels of abstraction, improving readability and reliability.

• Consistent solutions to frequently performed functions.

• Simplified changes.

• Improved testability.

Applications might include creating complex tables, frequently used code, and complex operations.

6.1 Macro Syntax for NY4, NY5, NY7, NY8A, NY9

NYASM macros are defined according to the following syntax:

<label> macro [<arg1>,<arg2> ..., <argn>]

:

:

endm

Where <label> is a valid NYASM label and <arg> is any number of optional arguments supplied to the

macro. The values assigned to these arguments at the time the macro name is invoked will be substituted

wherever the argument name occurs in the body of the macro. The body of a macro may be comprised of

NYASM directives, or NYASM Macro Directives (LOCAL for example). Refer to Chapter 5.2. NYASM

continues to process the body of the macro until an EXITM or ENDM directive is encountered.

Note: Forward references to macros are not permitted.

6.1.1 Macro Directives

There are directives that are unique to macro definitions. They cannot be used out of the macro

context (refer to Chapter 5.2.1 for details concerning these directives):

• MACRO

• LOCAL

• EXITM

• ENDM

When writing macros, you can use any of these directives PLUS any other directives supported by

NYASM.

6.1.2 Text Substitution

String replacement and expression evaluation may appear within the body of a macro. Arguments

NYASM User Manual

Ver. 5.6 2025/11/25 62

may be used anywhere within the body of the macro.

Command Description

<arg> Substitute the argument text supplied as part of the macro invocation.

define_table macro num_of_entry

local a = 0

while a < num_of_entry

dw 0

a += 1

endw

endm

when invoked, would generate:

dw 0 ; 1st

dw 0 ; 2nd

 :

 :

dw 0 ; (num_of_entry-1)-th

dw 0 ; (num_of_entry)-th

6.1.3 Macro Usage

Once the macro has been defined, it can be invoked at any point within the source module by using a

macro call, as described below:

<macro_name> [<arg>, ..., <arg>]

where <macro_name> is the name of a previously defined macro and arguments are supplied as

required. The macro call itself will not occupy any locations in memory. However, the macro

expansion will begin at the current memory location. Commas may be used to reserve an argument

position. The EXITM directive (see Chapter 5) provides an alternate method for terminating a macro

expansion. During a macro expansion, this directive causes expansion of the current macro to stop

and all code between the EXITM and the ENDM directives for this macro to be ignored. If macros are

nested, EXITM causes code generation to return to the previous level of macro expansion.

6.2 Macro Syntax for NY8L

6.2.1 MACRO Syntax

NY8L macros are defined according to the following syntax:

.macro <label> [<arg1>,<arg2> ..., <argn>]

:

NYASM User Manual

Ver. 5.6 2025/11/25 63

:

.endmacro

Where <label> is a valid NYASM label and <arg> is any number of optional arguments supplied to

the macro. The values assigned to these arguments at the time the macro name is invoked will be

substituted wherever the argument name occurs in the body of the macro. The body of a macro may

be comprised of NYASM directives, or NYASM Macro Directives (LOCAL for example). Refer to

Chapter 5.3. NYASM continues to process the body of the macro until an EXITM or ENDM directive

is encountered.

Note: Forward references to macros are not permitted.

6.2.2 Macro Directives

There are directives that are unique to macro definitions. They cannot be used out of the macro

context (refer to Chapter 5.3 for details concerning these directives):

.MACRO – Declare Macro

.ENDMACRO – End Macro Defined Block

.LOCAL – Declare Local Macro Variable

.IFBLANK – Conditional Assembly If Parameter Is Blank

.IFNBLANK – Conditional Assembly If Parameter Isn’t Blank

.BLANK – Check Blank Symbol

When writing macros, you can use any of these directives PLUS any other directives supported by

NYASM.

6.2.3 Text Substitution

String replacement and expression evaluation may appear within the body of a macro. Arguments

may be used anywhere within the body of the macro.

Command Description

<arg> Substitute the argument text supplied as part of the macro invocation.

 Example

.macro CAJE value, label

 cmp #value

 jz label

.endmacro

NYASM User Manual

Ver. 5.6 2025/11/25 64

6.2.4 Macro Usage

Once the macro has been defined, it can be invoked at any point within the source module by using a

macro call, as described below:

<macro_name> [<arg>, ..., <arg>]

where <macro_name> is the name of a previously defined macro and arguments are supplied as

required. The macro calls will not occupy any locations in memory. However, the macro expansion

will begin at the current memory location. Commas may be used to reserve an argument position.

The used parameters of macro calls can be less than the definied parameters, users can check the

designated parameters whether are delivered from caller by .blank.

NYASM User Manual

Ver. 5.6 2025/11/25 65

7 Expression Syntax and Operation
This chapter describes various expression formats, syntax, and operations used by NYASM.

7.1 NY4, NY5, NY7, NY8A, NY9

Content:

7.1 Numeric Constants and Radix

7.2 High/Mid/Low

7.3 Increment/Decrement (++/--)

7.1.1 Numeric Constants and Radix

NYASM supports the following radix forms: hexadecimal, decimal, octal and binary. The default radix

is decimal the default radix determines what value will be assigned to constants in the object file

when a radix is not explicitly specified by a base descriptor. NYASM only supports unsigned

constants and the values are assumed to be positive.

The following table presents the various radix specifications:

Table 7.1: Radix Specifications

Type Syntax Example

Decimal D’<digits>’ D’100’

Hexadecimal
H’<hex_digits>’

0x<hex_digits>
<hex_digits>h

H’9f’

0x9f
9fh

Octal O’<octal_digits>’ O’777’

Binary
B’<binary_digits>’

<binary_digits>b

B’00111001’

00111001b

Table 7.2: Arithmetic Operators and Precedence

Operator Example

$ Current/Return program counter goto $ + 3

(Left Parenthesis 1 + (d * 4)

) Right Parenthesis (Length + 1) * 256

! Item NOT (logical complement) if ! (a == b)

- Negation (2’s complement) -1 * Length

~ Complement flags = ~flags

high Return high byte of a 24-bit value
mvma high(0x121314)
;accumulator will contain 0x12

NYASM User Manual

Ver. 5.6 2025/11/25 66

Operator Example

mid Return mid byte of a 24-bit value
mvma mid(0x121314)
;accumulator will contain 0x13

low Return low byte of a 24-bit value
mvma low(0x121314)
;accumulator will contain 0x14

high0 Return low nibble of high byte of a 24-bit value
mvma high0(0x123456)
;accumulator will contain 0x2

high1 Return high nibble of high byte of a 24-bit value
mvma high1(0x123456)
;accumulator will contain 0x1

mid0 Return low nibble of middle byte of a 24-bit value
mvma mid0(0x123456)
;accumulator will contain 0x4

mid1 Return high nibble of middle byte of a 24-bit value
mvma mid1(0x123456)
;accumulator will contain 0x3

low0 Return low nibble of low byte of a 24-bit value
mvma low0(0x123456)
;accumulator will contain 0x6

low1 Return high nibble of low byte of a 24-bit value
mvma low1(0x123456)
;accumulator will contain 0x5

* Multiply a = b * c

/ Divide a = b / c

% Modulus entry_len = tot_len % 16

+ Add tot_len = entry_len * 8 + 1

- Subtract entry_len = (tot - 1) / 8

<< Left shift flags = flags << 1

>> Right shift flags = flags >> 1

>= Greater or equal if entry_idx >= num_entries

> Greater than if entry_idx > num_entries

< Less than if entry_idx < num_entries

<= Less or equal if entry_idx <= num_entries

== Equal to if entry_idx == num_entries

!= Not equal to if entry_idx != num_entries

& Bitwise AND flags = flags & ERROR_BIT

^ Bitwise exclusive OR flags = flags ^ ERROR_BIT

| Bitwise inclusive OR flags = flags | ERROR_BIT

&& Logical AND if (len == 512) && (b == c)

|| Logical OR if (len == 512) || (b == c)

= Set equal to entry_index = 0

+= Add to, set equal entry_index += 1

-= Subtract, set equal entry_index -= 1

*= Multiply, set equal entry_index *= entry_length

NYASM User Manual

Ver. 5.6 2025/11/25 67

Operator Example

/= Divide, set equal entry_total /= entry_length

%= Modulus, set equal entry_index %= 8

<<= Left shift, set equal flags <<= 3

>>= Right shift, set equal flags >>= 3

&= AND, set equal flags &= ERROR_FLAG

|= Inclusive OR, set equal flags |= ERROR_FLAG

^= Exclusive OR, set equal flags ^= ERROR_FLAG

++ Increment i ++

-- Decrement i --

7.1.2 High/Mid/Low

 Syntax

high <operand>

mid <operand>

low <operand>

 Description

These operators are used to return one byte of a multi-byte label value. This is done to handle

dynamic pointer calculations as might be used with table read and write instructions.

7.1.3 Increment/Decrement (++/--)

 Syntax

<variable>++

<variable>--

 Description

Increments or decrements a variable value. These operators can only be used on a line by

themselves; they cannot be embedded within other expression evaluation.

 Example

LoopCount = 4

while LoopCount > 0

nop

LoopCount --

Endw

NYASM User Manual

Ver. 5.6 2025/11/25 68

7.2 NY8L

Content:

1.17.2.1 Numeric constants and Radix

1.17.2.2 High/Mid/Low

7.2.1 Numeric constants and Radix

NYASM supports the following radix forms: hexadecimal, decimal and binary. The default radix is

decimal the default radix determines what value will be assigned to constants in the object file when a

radix is not explicitly specified by a base descriptor. NYASM only supports unsigned constants and

the values are assumed to be positive.

Table 7.3 Radix Specifications

Type Syntax Example

Decimal <digits> 100

Hexadecimal
$<hex_digits>’

0x<hex_digits>

$9f

0x9f

Binary %<binary_digits>’ %00111001

Table 7.4 Arithmetic Operators and Precedence

Operator Example

(Left Parenthesis 1 + (d * 4)

) Right Parenthesis (Length + 1) * 256

! Item NOT (logical complement) if ! (a == b)

- Negation (2’s complement) -1 * Length

~

.bitnot
Complement flags = ~flags

.bankbyte Return high byte of a 24-bit value mvma high(0x121314)
;accumulator will contain 0x12

.hibyte Return mid byte of a 24-bit value mvma mid(0x121314)
;accumulator will contain 0x13

.lobyte Return low byte of a 24-bit value mvma low(0x121314)
;accumulator will contain 0x14

* Multiply a = b * c

/ Divide a = b / c

% Modulus entry_len = tot_len % 16

+ Add tot_len = entry_len * 8 + 1

- Subtract entry_len = (tot - 1) / 8

NYASM User Manual

Ver. 5.6 2025/11/25 69

Operator Example

<< Left shift flags = flags << 1

>> Right shift flags = flags >> 1

>= Greater or equal if entry_idx >= num_entries

> Greater than if entry_idx > num_entries

< Less than if entry_idx < num_entries

<= Less or equal if entry_idx <= num_entries

== Equal to if entry_idx == num_entries

!= Not equal to if entry_idx != num_entries

&

.bitand
Bit AND flags = flags & ERROR_BIT

^ Bit mutex OR flags = flags ^ ERROR_BIT

|

.bitor
Bit OR flags = flags | ERROR_BIT

&&

.and
Logical AND if (len == 512) && (b == c)

||

.or
Logical OR if (len == 512) || (b == c)

.round Round .round(2.345)

.ceil Unconditional carry .ceil(2.345)

.floor Unconditional round down .floor(2.345)

7.2.2 High/Mid/Low

 Syntax

.bankbyte <operand>

.hibyte <operand>

.lobyte <operand>

 Description

These operators are used to return one byte of a multi-byte label value. This is done to handle

dynamic pointer calculations as might be used with table read and write instructions.

NYASM User Manual

Ver. 5.6 2025/11/25 70

8 Revision History
Version Date Description Modified Page

1.00 2007/12/20 The first version. -

1.01 2009/10/12 Revision. -

1.1 2010/01/11 Add NY4 series MCU. 75

1.2 2010/07/20
1. Add NY4/NY5 series new bodies.

2. Add NYASM Errors/Warnings.

75

61

1.3 2010/08/17 Windows 7 complied. 11

1.4 2012/02/29 Modify NY5B/5C series MCU. 75

1.5 2013/06/25
1. Please use Windows XP or above operating system version.

2. Add NY4(B) and NY7 series to MCU List.

11

75

1.6 2013/08/16 Modify NY7 series of MCU List. 59

1.7 2014/02/24

1. Modify the example of MACRO.

2. Modify the default of radix as decimal.

3. Modify Errors/Warnings messages.

4. Add “Forward reference” to Glossary.

35

37, 65, 87

79

86

1.8 2014/05/16 Add NY8 series MCU. 78

1.9 2014/11/14
Change the IC bodies of MCU List: NY4B018C, NY4B038C,

NY4B058C, NY5C158C, NY5C185C, NY5C345C.
75

2.0 2015/01/29
1. Add binary representation

2. Modify the examples of arithmetic operators.
65

2.1 2015/07/27 Modify UI description. 17

2.2 2015/11/20 Add NY9UB series MCU. 79

2.3 2016/01/27
1. Remove NY4xxxxA/NY5xxxxA series, keep NY5AxxxA series.

2. Add NY8 series MCU.

-

61

NYASM User Manual

Ver. 5.6 2025/11/25 71

Version Date Description Modified Page

2.4 2016/05/20
1. Add NY6 series MCU.

2. Add NY8A051C/51D MCU.

60

62

2.5 2016/08/22 Add NY8A53D MCU. 63

2.6 2016/11/18
1. Remove NY5AA series.

2. Add NY9UP01A MCU.

-

79

2.7 2017/05/23

1. Support NY8L series MCU.

2. Add NY8A054A MCU.

3. Add NY8L series MCU.

42, 62, 66

78

78

2.8 2017/08/09 Add NY8A054D MCU. 78

2.9 2017/11/17
1. Modify List Directive Options and NYASM Assembler Options.

2. Add NY8A051E MCU.

34, 74

81

3.0 2018/02/08 Add NY8B062D MCU. 81

3.1 2018/08/27

1. Remove DT command.

2. Remove NY8A057A, NY8B073A, NY8B074A MCU.

3. Remove NY6C450A ~ NY6C720A MCU.

-

-

-

3.2 2018/11/21 Add NY8B062A MCU. 80

3.3 2019/02/19 Add NY8A051F, NY9UP08A MCU. 78, 79

3.4 2019/05/28
Add NY5P025J, NY5P055J, NY5P085J, NY5B035C, NY5B045C,

NY8A050D, NY8AE51D and NY8B062B MCU.
76

3.5 2019/08/22 Remove NY8L005A, NY8L010A and add NY8LP10A, NY8LP11A. -

3.6 2019/11/14 Add NY5P series, NY5A018C, NY5A025C and NY8BM72A. 76

.3.7 2020/03/16 Add NY5AC and NY5BC MCU. 77

3.8 2020/08/18
1. Add the command description of.bitor and .word.

2. Add NY6 series, NY8A054E, and NY8B061D IC.

44, 59

77

NYASM User Manual

Ver. 5.6 2025/11/25 72

Version Date Description Modified Page

3.9 2020/11/12

1. Remove NY4B018B / NY5AxxxB / NY5BxxxB / NY5C112B / 132B /

158B / 185B/ 225B / 265B / 305B / 345B IC.

2. Add NY8A053E / NY9UP02A IC.

-

82

4.0 2021/01/27
1. Remove NY6A003A / NY6A005A / NY8L050A IC.

2. Add NY8B062E / NY8TM52D IC.

-

83

4.1 2021/05/18 Add NY5QxxxA / NY8B060E / NY8BE62D IC. 80

4.2 2021/09/10
1. Remove DATA, DB and DN commands.

2. Add NY5Q020A.

-

79

4.3 2021/11/11 Add NY8TE64A IC. 82

4.4 2022/02/22
Add NY5Q026A, NY5Q046A, NY5Q080A, NY5Q160A, NY8A051H,

NY8AE51F。
79

4.5 2022/05/19
1. System requirement adds Microsoft Win11.

2. Add NY8B060D.

9

82

4.6 2022/08/24 Add NY8B061E. 82

4.7 2022/11/28 Add NY4P045C, NY8B062F. 77

4.8 2023/02/15 Add NY4P018C, NY4P065C, NY4P085C, NY4P105C and NY8A050E. 77

4.9 2023/05/15 Fix incorrect description. -

5.0 2023/08/21 Add NY8A052E. 83

5.1 2024/02/22

1. Add the .align2 command.

2. Add NY8BM61D and NY8BM62D.

3. Remove NY8L020A and NY8L030A.

40

84

-

5.2 2024/08/22

Remove NY5P520J, NY5P720J, NY5P1K0J, NY5P1K2J, NY5C450B,

NY5C520B, NY5C640B, NY5C720B, NY7C450A, NY7C520A,

NY8A051A, NY8A051C, NY8A051E, NY8A053A, NY8AE51D,

NY8B060E, NY8B061D and NY8B071A.

-

NYASM User Manual

Ver. 5.6 2025/11/25 73

Version Date Description Modified Page

5.3 2025/02/27
Add NY5Q019A, NY5Q039A, NY5Q079A, NY5Q159A, NY8A051J,

NY8A051K, NY8A051L, NY8LP08.
80, 82, 83

5.4 2025/05/27
1. Add a pseudo-instruction.

2. Add NY8A051H1, NY8B062F1, NY8BM84A.,

28

82, 83

5.5 2025/08/27 Add NY8A054E1, NY8F2481. 83. 84

5.6 2025/11/25
1. Add the DWS pseudo-instruction.

2. Add NY8A050E1, NY8F1141, and NY8F1241.

24

83, 84

NYASM User Manual

Ver. 5.6 2025/11/25 74

Appendix A - Quick Reference
This appendix lists abbreviated information on NYASM and MCU instruction sets for use in developing

applications using NYASM.

Content:
A.1 NYASM Quick Reference

A.2 MCU List

A.1 NYASM Quick Reference

The following Quick Reference Guide gives all the instructions, directives, and command list options for

NYASM Assembler.

Table A.1: NYASM Directive Language Summary

Directive Description Syntax

CONTROL DIRECTIVES

CONSTANT Declare symbol constant. constant
<label>[=<expr>,...,<label>[=<expr>]]

#DEFINE Define a text substitution label. #define <name> [<value>]
#define <name> [<arg>,...,<arg>]

END End program block. end

EQU Define an assemble constant. <label> equ <expr>

ERROR Issue an error message. error "<text_string>"

#INCLUDATA Include binary data file. #includata "<data_file>" [,<address>]

#INCLUDE Include additional source file. #include "<include_file>"

LIST Listing options. list [<list_option>,...,<list_option>]

MESSG Create user defined message. messg "<message_text>"

ORG Set program origin. [<label>:] org <expr>

LINES Re-declare line-per-page. lines <value>

NEWPAGE Re-declare line-per-page. Newpage <value>

RADIX Specify default radix. radix <default_radix>

SUBTITLE Specify program subtitle. subtitle "<sub_text>"

TITLE Specify program title. title "<title_text>"

#UNDEFINE Delete a substitution label. #undefine <label>

VARIABLE Declare symbol variable.
variable

<label>[=<expr>,...,<label>[=<expr>]]

NYASM User Manual

Ver. 5.6 2025/11/25 75

Directive Description Syntax

CONDITIONAL ASSEMBLY

BREAK Escape from a FOR, WHILE or REPEAT-UNTIL
loop, or Jump to the end of a SWITCH block. break [<Boolean expression>]

CASE Part of a SWITCH block; must use CASE with
SWITCH.

switch <expression>
case <expression 1>[,<expression 2>]

<statements>

CONTINUE

Jump to the begin of FOR, WHILE or
REPEAT-UNTIL loop that contains CONTINUE
directive.
All statements behind CONTINUE in a loop are
ignored.

continue [<Boolean expression>]

DEFAULT
Part of a SWITCH block; must use DEFAULT
with SWITCH.
Begin default assembly block to SWITCH.

default
<statements>

ELSE Begin alternative assembly
block to IF.

else
 <statements>

ENDFOR End a FOR loop. endfor

ENDIF End conditional assembly block. endif

ENDS Directive for coding convenience: presenting
ENDFOR, ENDW, ENDSW, ENDIF. ends

ENDSW End conditional switching assembly block. endsw

ENDW End a WHILE loop. endw

FOR Perform counting loop FOR. for <iterator> = <expr1> to <expr2>
[step <expr3>]

IF Begin conditionally assembled code block. if <expr>

IFDEF Execute if symbol has been defined. ifdef <label>

IFNDEF Execute If symbol has not been defined. ifndef <label>

REPEAT Begin at-least-one-time loop.
Repeat
 <statements>
until <Boolean expression>

SWITCH Begin conditional switching assembly block. switch <expr>

UNTIL End at-least-one-time loop if condition is true.
Repeat
 <statements>
until <Boolean expression>

WHILE Perform loop WHILE condition is true. while <expr>

DATA

CBLOCK Define a block of constants. cblock [<expr>]

DW Declare data of one word. [<label>] dw <expr>[,<expr>,...,<expr>]

ENDC End an automatic constant block. endc

MACRO

ENDM End a macro definition. endm

EXITM Exit from a macro. exitm

EXPAND Expand macro listing. expand

NYASM User Manual

Ver. 5.6 2025/11/25 76

Directive Description Syntax

LOCAL Declare local macro variable. local <label>[,<label>]

MACRO Declare macro definition. <label> macro [<arg>,...,<arg>]

MAXMACRODEPTH Setup the maximum depth of macro expansion. Maxmacrodepth [=] <expr>

NOEXPAND Turn off macro expansions. noexpand

Table A.2: NYASM Assembler Options:

OPTION DEFAULT DESCRIPTION

c Off
Enable/Disable case sensitivity
c=on Enable
c=off Disable

p None

Set the processor type:
/p=<processor_type>
where <processor_type> is an Nyquest MCU device. For example,
NY5A005A.

unlockrsvmem Locked
/unlockrsvmem
For 4-bit MCU only. Allow the programming right in reserved memory
area.

nocfgblk Configuration
block required

/nocfgblk
For 4-bit MCU only. Ignore the assembly time check for the existence
of configuration block file.

Table A.3: Radix Types Supported

Type Syntax Example

Decimal D’<digits>’ D’100’

Hexadecimal
H’<hex_digits>’
0x<hex_digits>
<hex_digits>h

H’9f’
0x9f
9fh

Octal O’<octal_digits>’ O’777’

Binary B’<binary_digits>’ B’00111001’

Table A.4: NYASM Arithmetic Operators

Operator Example

$ Current/Return program counter goto $ + 3

(Left Parenthesis 1 + (d * 4)

) Right Parenthesis (Length + 1) * 256

! Item NOT (logical complement) if ! (a == b)

- Negation (2’s complement) -1 * Length

~ Complement flags = ~flags

NYASM User Manual

Ver. 5.6 2025/11/25 77

Operator Example

high Return high byte of a 24-bit value
mvma high 0x121314
;accumulator will contain 0x12

mid Return mid byte of a 24-bit value
mvma mid 0x121314
;accumulator will contain 0x13

low Return low byte of a 24-bit value
mvma low 0x121314
;accumulator will contain 0x14

high0 Return low nibble of high byte of a 24-bit value
mvma high0 0x123456
;accumulator will contain 0x2

high1 Return high nibble of high byte of a 24-bit value
mvma high1 0x123456
;accumulator will contain 0x1

mid0
Return low nibble of middle byte of a 24-bit
value

mvma mid0 0x123456
;accumulator will contain 0x4

mid1
Return high nibble of middle byte of a 24-bit
value

mvma mid1 0x123456
;accumulator will contain 0x3

low0 Return low nibble of low byte of a 24-bit value
mvma low0 0x123456
;accumulator will contain 0x6

low1 Return high nibble of low byte of a 24-bit value
mvma low1 0x123456
;accumulator will contain 0x5

* Multiply a = b * c

/ Divide a = b / c

% Modulus entry_len = tot_len % 16

+ Add tot_len = entry_len * 8 + 1

- Subtract entry_len = (tot - 1) / 8

<< Left shift flags = flags << 1

>> Right shift flags = flags >> 1

>= Greater or equal if entry_idx >= num_entries

> Greater than if entry_idx > num_entries

< Less than if entry_idx < num_entries

<= Less or equal if entry_idx <= num_entries

== Equal to if entry_idx == num_entries

!= Not equal to if entry_idx != num_entries

& Bitwise AND flags = flags & ERROR_BIT

^ Bitwise exclusive OR flags = flags ^ ERROR_BIT

| Bitwise inclusive OR flags = flags | ERROR_BIT

&& Logical AND if (len == 512) && (b == c)

|| Logical OR if (len == 512) || (b == c)

NYASM User Manual

Ver. 5.6 2025/11/25 78

Operator Example

= Set equal to entry_index = 0

+= Add to, set equal entry_index += 1

-= Subtract, set equal entry_index -= 1

*= Multiply, set equal entry_index *= entry_length

/= Divide, set equal entry_total /= entry_length

%= Modulus, set equal entry_index %= 8

<<= Left shift, set equal flags <<= 3

>>= Right shift, set equal flags >>= 3

&= AND, set equal flags &= ERROR_FLAG

|= Inclusive OR, set equal flags |= ERROR_FLAG

^= Exclusive OR, set equal flags ^= ERROR_FLAG

++ Increment i ++

-- Decrement i --

NYASM User Manual

Ver. 5.6 2025/11/25 79

A.2 MCU List

Table A.5: MCU List

No. IC type PROG ROM size DATA ROM size Reserved Memory I/O Pin Count

1 NY4P018C 16K x 10 48K x 10 0x001F--0x07FF 8 I/O

2 NY4P045C 16K x 10 112K x 10 0x001F--0x07FF 8 I/O

3 NY4P065C 16K x 10 160K x 10 0x001F--0x07FF 8 I/O

4 NY4P085C 16K x 10 208K x 10 0x001F--0x07FF 8 I/O

5 NY4P105C 16K x 10 256K x 10 0x001F--0x07FF 8 I/O

6 NY4A003B 12K x 10 12K x 10 0x001F--0x07FF 4 I/O

7 NY4A005B 16K x 10 16K x 10 0x001F--0x07FF 4 I/O

8 NY4A008B 16K x 10 24K x 10 0x001F--0x07FF 4 I/O

9 NY4A011B 16K x 10 32K x 10 0x001F--0x07FF 4 I/O

10 NY4B003B 12K x 10 12K x 10 0x001F--0x07FF 8 I/O

11 NY4B005B 16K x 10 16K x 10 0x001F--0x07FF 8 I/O

12 NY4B008B 16K x 10 24K x 10 0x001F--0x07FF 8 I/O

13 NY4B011B 16K x 10 32K x 10 0x001F--0x07FF 8 I/O

14 NY4B018C 16K x 10 48K x 10 0x001F--0x07FF 8 I/O

15 NY4B025B 16K x 10 64K x 10 0x001F--0x07FF 8 I/O

16 NY4B038C 16K x 10 96K x 10 0x001F--0x07FF 8 I/O

17 NY4B045B 16K x 10 112K x 10 0x001F--0x07FF 8 I/O

18 NY4B058C 16K x 10 144K x 10 0x001F--0x07FF 8 I/O

19 NY4B065B 16K x 10 160K x 10 0x001F--0x07FF 8 I/O

20 NY4B075B 16K x 10 184K x 10 0x001F--0x07FF 8 I/O

21 NY4B085B 16K x 10 208K x 10 0x001F--0x07FF 8 I/O

22 NY4B095B 16K x 10 232K x 10 0x001F--0x07FF 8 I/O

23 NY4B105B 16K x 10 256K x 10 0x001F--0x07FF 8 I/O

24 NY4B115B 16K x 10 280K x 10 0x001F--0x07FF 8 I/O

25 NY4B125B 16K x 10 304K x 10 0x001F--0x07FF 8 I/O

26 NY4B145B 16K x 10 352K x 10 0x001F--0x07FF 8 I/O

27 NY4B165B 16K x 10 400K x 10 0x001F--0x07FF 8 I/O

28 NY5P025B 16K x 10 64K x 10 0x001F--0x0BFF 16 I/O

29 NY5P055B 16K x 10 136K x 10 0x001F--0x0BFF 16 I/O

30 NY5P085B 16K x 10 208K x 10 0x001F--0x0BFF 16 I/O

31 NY5P185B 16K x 10 448K x 10 0x001F--0x0BFF 16 I/O

32 NY5P025J 16K x 10 64K x 10 0x001F--0x0BFF 16 I/O

33 NY5P055J 16K x 10 136K x 10 0x001F--0x0BFF 16 I/O

NYASM User Manual

Ver. 5.6 2025/11/25 80

No. IC type PROG ROM size DATA ROM size Reserved Memory I/O Pin Count

34 NY5P085J 16K x 10 208K x 10 0x001F--0x0BFF 16 I/O

35 NY5P185J 16K x 10 448K x 10 0x001F--0x0BFF 16 I/O

36 NY5P345J 16K x 10 832K x 10 0x001F--0x0BFF 16 I/O

37 NY5A003C 12K x 10 12K x 10 0x001F--0x0BFF 7+1 I/O

38 NY5A005C 16K x 10 16K x 10 0x001F--0x0BFF 7+1 I/O

39 NY5A008C 16K x 10 24K x 10 0x001F--0x0BFF 7+1 I/O

40 NY5A011C 16K x 10 32K x 10 0x001F--0x0BFF 7+1 I/O

41 NY5A018C 16K x 10 48K x 10 0x001F--0x0BFF 7+1 I/O

42 NY5A025C 16K x 10 64K x 10 0x001F--0x0BFF 7+1 I/O

43 NY5A035C 16K x 10 88K x 10 0x001F--0x0BFF 7+1 I/O

44 NY5A045C 16K x 10 112K x 10 0x001F--0x0BFF 7+1 I/O

45 NY5A055C 16K x 10 136K x 10 0x001F--0x0BFF 7+1 I/O

46 NY5A065C 16K x 10 160K x 10 0x001F--0x0BFF 7+1 I/O

47 NY5B005C 16K x 10 16K x 10 0x001F--0x0BFF 14+1 I/O

48 NY5B008C 16K x 10 24K x 10 0x001F--0x0BFF 14+1 I/O

49 NY5B011C 16K x 10 32K x 10 0x001F--0x0BFF 14+1 I/O

50 NY5B018C 16K x 10 48K x 10 0x001F--0x0BFF 14+1 I/O

51 NY5B025C 16K x 10 64K x 10 0x001F--0x0BFF 14+1 I/O

52 NY5B035C 16K x 10 88K x 10 0x001F--0x0BFF 14+1 I/O

53 NY5B046C 16K x 10 112K x 10 0x001F--0x0BFF 14+1 I/O

54 NY5B055C 16K x 10 136K x 10 0x001F--0x0BFF 14+1 I/O

55 NY5B065C 16K x 10 160K x 10 0x001F--0x0BFF 14+1 I/O

56 NY5B075C 16K x 10 184K x 10 0x001F--0x0BFF 14+1 I/O

57 NY5B085C 16K x 10 208K x 10 0x001F--0x0BFF 14+1 I/O

58 NY5B112C 16K x 10 272K x 10 0x001F--0x0BFF 14+1 I/O

59 NY5B132C 16K x 10 320K x 10 0x001F--0x0BFF 14+1 I/O

60 NY5B158C 16K x 10 384K x 10 0x001F--0x0BFF 14+1 I/O

61 NY5B185C 16K x 10 448K x 10 0x001F--0x0BFF 14+1 I/O

62 NY5C112C 16K x 10 272K x 10 0x001F--0x0BFF 19+1 I/O

63 NY5C132C 16K x 10 320K x 10 0x001F--0x0BFF 19+1 I/O

64 NY5C158C 16K x 10 384K x 10 0x001F--0x0BFF 19+1 I/O

65 NY5C185C 16K x 10 448K x 10 0x001F--0x0BFF 19+1 I/O

66 NY5C225C 16K x 10 544K x 10 0x001F--0x0BFF 19+1 I/O

67 NY5C265C 16K x 10 640K x 10 0x001F--0x0BFF 19+1 I/O

68 NY5C305C 16K x 10 736K x 10 0x001F--0x0BFF 19+1 I/O

69 NY5C345C 16K x 10 832K x 10 0x001F--0x0BFF 19+1 I/O

NYASM User Manual

Ver. 5.6 2025/11/25 81

No. IC type PROG ROM size DATA ROM size Reserved Memory I/O Pin Count

70 NY5Q019A 48K x 10 48K x 10 0x001F—0x07FF 8 I/O

71 NY5Q020A 48K x 10 48K x 10 0x001F—0x07FF 8 I/O

72 NY5Q026A 64K x 10 64K x 10 0x001F—0x07FF 4 I/O

73 NY5Q039A 64K x 10 96K x 10 0x001F—0x07FF 8 I/O

74 NY5Q040A 64K x 10 96K x 10 0x001F—0x07FF 8 I/O

75 NY5Q046A 64K x 10 112K x 10 0x001F—0x07FF 12 I/O

76 NY5Q060A 64K x 10 144K x 10 0x001F—0x07FF 16 I/O

77 NY5Q079A 64K x 10 192K x 10 0x001F—0x07FF 12 I/O

78 NY5Q080A 64K x 10 192K x 10 0x001F—0x07FF 12 I/O

79 NY5Q092A 64K x 10 224K x 10 0x001F—0x07FF 16 I/O

80 NY5Q159A 64K x 10 384K x 10 0x001F—0x07FF 12 I/O

81 NY5Q160A 64K x 10 384K x 10 0x001F—0x07FF 12 I/O

82 NY5Q172A 64K x 10 416K x 10 0x001F—0x07FF 16 I/O

83 NY5Q342A 64K x 10 832K x 10 0x001F—0x07FF 20 I/O

84 NY6P025A 64K x 10 64K x 10 0x001E—0x03FF 9 I/O

85 NY6P025J 64K x 10 64K x 10 0x001E—0x03FF 16 I/O

86 NY6P055J 136K x 10 136K x 10 0x001E—0x03FF 16 I/O

87 NY6P085J 208K x 10 208K x 10 0x001E—0x03FF 16 I/O

88 NY6P185J 448K x 10 448K x 10 0x001E—0x03FF 24 I/O

89 NY6P345J 832K x 10 832K x 10 0x001E—0x03FF 24 I/O

90 NY6A008A 24K x 10 24K x 10 0x001E—0x03FF 8 I/O

91 NY6A011A 32K x 10 32K x 10 0x001E—0x03FF 8 I/O

92 NY6A018A 48K x 10 48K x 10 0x001E—0x03FF 8 I/O

93 NY6A025A 64K x 10 64K x 10 0x001E—0x03FF 8 I/O

94 NY6A035A 88K x 10 88K x 10 0x001E—0x03FF 8 I/O

95 NY6A045A 112K x 10 112K x 10 0x001E—0x03FF 8 I/O

96 NY6A055A 136K x 10 136K x 10 0x001E—0x03FF 8 I/O

97 NY6A065A 160K x 10 160K x 10 0x001E—0x03FF 8 I/O

98 NY6B005A 16K x 10 16K x 10 0x001E—0x03FF 16 I/O

99 NY6B008A 24K x 10 24K x 10 0x001E—0x03FF 16 I/O

100 NY6B011A 32K x 10 32K x 10 0x001E—0x03FF 16 I/O

101 NY6B018A 48K x 10 48K x 10 0x001E—0x03FF 16 I/O

102 NY6B025A 64K x 10 64K x 10 0x001E—0x03FF 16 I/O

103 NY6B035A 88K x 10 88K x 10 0x001E—0x03FF 16 I/O

104 NY6B045A 112K x 10 112K x 10 0x001E—0x03FF 16 I/O

NYASM User Manual

Ver. 5.6 2025/11/25 82

No. IC type PROG ROM size DATA ROM size Reserved Memory I/O Pin Count

105 NY6B055A 136K x 10 136K x 10 0x001E—0x03FF 16 I/O

106 NY6B065A 160K x 10 160K x 10 0x001E—0x03FF 16 I/O

107 NY6B075A 184K x 10 184K x 10 0x001E—0x03FF 16 I/O

108 NY6B085A 208K x 10 208K x 10 0x001E—0x03FF 16 I/O

109 NY6C112A 272K x 10 272K x 10 0x001E—0x03FF 24 I/O

110 NY6C132A 320K x 10 320K x 10 0x001E—0x03FF 24 I/O

111 NY6C158A 384K x 10 384K x 10 0x001E—0x03FF 24 I/O

112 NY6C185A 448K x 10 448K x 10 0x001E—0x03FF 24 I/O

113 NY6C225A 544K x 10 544K x 10 0x001E—0x03FF 24 I/O

114 NY6C265A 640K x 10 640K x 10 0x001E—0x03FF 24 I/O

115 NY6C305A 736K x 10 736K x 10 0x001E—0x03FF 24 I/O

116 NY6C345A 832K x 10 832K x 10 0x001E—0x03FF 24 I/O

117 NY7A004A 16K x 12 16K x 12 0x0010 – 0x03FF 8 I/O

118 NY7A007A 24K x 12 24K x 12 0x0010 – 0x03FF 8 I/O

119 NY7A010A 32K x 12 32K x 12 0x0010 – 0x03FF 8 I/O

120 NY7A016A 48K x 12 48K x 12 0x0010 – 0x03FF 8 I/O

121 NY7A021A 64K x 12 64K x 12 0x0010 – 0x03FF 8 I/O

122 NY7A032A 96K x 12 96K x 12 0x0010 – 0x03FF 8 I/O

123 NY7A043A 128K x 12 128K x 12 0x0010 – 0x03FF 8 I/O

124 NY7A054A 160K x 12 160K x 12 0x0010 – 0x03FF 8 I/O

125 NY7A065A 192K x 12 192K x 12 0x0010 – 0x03FF 8 I/O

126 NY7B007A 24K x 12 24K x 12 0x0010 – 0x03FF 16 I/O

127 NY7B010A 32K x 12 32K x 12 0x0010 – 0x03FF 16 I/O

128 NY7B016A 48K x 12 48K x 12 0x0010 – 0x03FF 16 I/O

129 NY7B021A 64K x 12 64K x 12 0x0010 – 0x03FF 16 I/O

130 NY7B032A 96K x 12 96K x 12 0x0010 – 0x03FF 16 I/O

131 NY7B043A 128K x 12 128K x 12 0x0010 – 0x03FF 16 I/O

132 NY7B054A 160K x 12 160K x 12 0x0010 – 0x03FF 16 I/O

133 NY7B065A 192K x 12 192K x 12 0x0010 – 0x03FF 16 I/O

134 NY7B076A 224K x 12 224K x 12 0x0010 – 0x03FF 16 I/O

135 NY7B087A 256K x 12 256K x 12 0x0010 – 0x03FF 16 I/O

136 NY7C010A 32K x 12 32K x 12 0x0010 – 0x03FF 24 I/O

137 NY7C016A 48K x 12 48K x 12 0x0010 – 0x03FF 24 I/O

138 NY7C021A 64K x 12 64K x 12 0x0010 – 0x03FF 24 I/O

139 NY7C032A 96K x 12 96K x 12 0x0010 – 0x03FF 24 I/O

NYASM User Manual

Ver. 5.6 2025/11/25 83

No. IC type PROG ROM size DATA ROM size Reserved Memory I/O Pin Count

140 NY7C043A 128K x 12 128K x 12 0x0010 – 0x03FF 24 I/O

141 NY7C054A 160K x 12 160K x 12 0x0010 – 0x03FF 24 I/O

142 NY7C065A 192K x 12 192K x 12 0x0010 – 0x03FF 24 I/O

143 NY7C076A 224K x 12 224K x 12 0x0010 – 0x03FF 24 I/O

144 NY7C087A 256K x 12 256K x 12 0x0010 – 0x03FF 24 I/O

145 NY7C110A 328K x 12 328K x 12 0x0010 – 0x03FF 24 I/O

146 NY7C130A 384K x 12 384K x 12 0x0010 – 0x03FF 24 I/O

147 NY7C150A 448K x 12 448K x 12 0x0010 – 0x03FF 24 I/O

148 NY7C170A 512K x 12 512K x 12 0x0010 – 0x03FF 24 I/O

149 NY7C220A 656K x 12 656K x 12 0x0010 – 0x03FF 24 I/O

150 NY7C260A 768K x 12 768K x 12 0x0010 – 0x03FF 24 I/O

151 NY7C305A 896K x 12 896K x 12 0x0010 – 0x03FF 24 I/O

152 NY7C345A 1024K x 12 1024K x 12 0x0010 – 0x03FF 24 I/O

153 NY8A050D 512 x 14 512 x 14 - 6 I/O

154 NY8A050E 512 x 14 512 x 14 - 6 I/O

155 NY8A050E1 512 x 14 512 x 14 - 6 I/O

156 NY8A051B 1K x 14 1K x 14 - 6 I/O

157 NY8A051D 1K x 14 1K x 14 - 6 I/O

158 NY8A051F 1K x 14 1K x 14 - 6 I/O

159 NY8A051G 1K x 14 1K x 14 - 6 I/O

160 NY8A051H 1K x 14 1K x 14 - 6 I/O

161 NY8A051H1 1K x 14 1K x 14 - 6 I/O

162 NY8A051J 1K x 14 1K x 14 - 6 I/O

163 NY8A051K 1K x 14 1K x 14 - 6 I/O

164 NY8A051L 1K x 14 1K x 14 - 6 I/O

165 NY8A052E 1.5K x 14 1.5K x 14 - 14 I/O

166 NY8A053B 1K x 14 1K x 14 - 12 I/O

167 NY8A053D 1K x 14 1K x 14 - 12 I/O

168 NY8A053E 1K x 14 1K x 14 - 12 I/O

169 NY8A054A 2K x 14 2K x 14 - 14 I/O

170 NY8A054D 2K x 14 2K x 14 - 14 I/O

171 NY8A054E 2K x 14 2K x 14 - 14 I/O

172 NY8A054E1 2K x 14 2K x 14 - 14 I/O

173 NY8A056A 1K x 14 1K x 14 - 16 I/O

174 NY8AE51F 1K x 14 1K x 14 - 6 I/O

NYASM User Manual

Ver. 5.6 2025/11/25 84

No. IC type PROG ROM size DATA ROM size Reserved Memory I/O Pin Count

175 NY8B060D 1K x 14 1K x 14 - 6 I/O

176 NY8B061E 1.25K x 14 1.25K x 14 - 14 I/O

177 NY8B062A 2K x 14 2K x 14 - 14 I/O

178 NY8B062B 2K x 14 2K x 14 - 14 I/O

179 NY8B062D 2K x 14 2K x 14 - 14 I/O

180 NY8B062E 2K x 14 2K x 14 - 14 I/O

181 NY8B062F 2K x 14 2K x 14 - 14 I/O

182 NY8B062F1 2K x 14 2K x 14 - 14 I/O

183 NY8B072A 2K x 14 2K x 14 - 18 I/O

184 NY8BE62D 2K x 14 2K x 14 - 14 I/O

185 NY8BM61D 2K x 14 2K x 14 - 14 I/O

186 NY8BM62D 2K x 14 2K x 14 - 14 I/O

187 NY8BM72A 2K x 14 2K x 14 - 18 I/O

188 NY8BM84A 4K x 16 4K x 16 - 22 I/O

189 NY8F1141 2K x 16 2K x 16 14 I/O

190 NY8F1241 2K x 16 2K x 16 14 I/O

191 NY8F2481 4K x 16 4K x 16 - 22 I/O

192 NY8TE64A 4K x 14 4K x 14 - 18 I/O

193 NY8TM52D 2K x 14 2K x 14 - 6 I/O

194 NY8LP05A 5K x 8 5K x 8 0x0000~0x07FF 16 I/O

195 NY8LP08A 8K x 8 8K x 8 0x0000~0x07FF 24 I/O

196 NY8LP10A 17K x 8 17K x 8 0x0000~0x07FF 16 I/O

197 NY8LP11A 17K x 8 17K x 8 0x0000~0x07FF 16 I/O

198 NY9T001A 4K x 10 4K x 10 0x001F – 0x01FF 4 I/O

199 NY9T004A 8K x 10 8K x 10 0x001F – 0x01FF 8 I/O

200 NY9T008A 12K x 10 12K x 10 0x001F – 0x01FF 16 I/O

201 NY9T016A 16K x 10 16K x 10 0x001F – 0x01FF 24 I/O

202 NY9UP01A 768 x 10 768 x 10 0x0040 – 0x004F 13 I/O

203 NY9UP02A 1280 x 10 1280 x 10 0x0020 – 0x004F 13 I/O

204 NY9UP08A 8K x 10 8K x 10 0x0020 – 0x004F 13 I/O

205 NY9U032B 32K x 10 32K x 10 0x001F – 0x03FF 16 I/O

206 NY9U064B 64K x 10 64K x 10 0x001F – 0x03FF 16 I/O

NYASM User Manual

Ver. 5.6 2025/11/25 85

Appendix B - Glossary
To provide a common frame of reference, this glossary defines the terms that are used in this document. This

glossary contains definitions for the terms used in the NYASM.

B.1 Terms

Nyquest MCU
Nyquest MCU refers to the NY4/NY5/NY7 micro-controller family.

Application
A set of software and hardware developed by the user, usually designed to be a product controlled by a

Nyquest micro-controller.

Assemble
The act of executing the NYASM macro assembler to translate source code to machine code.

Binary File
An NYASM single executable output.

Build
A function that recompiles all the source files for an application.

Control Directives
Control directives permit sections of conditionally assembled code.

Data Directives
Data Directives are those that control the allocation of memory and provide a way to refer to data items

symbolically, that is, by meaningful names.

Data RAM
General purpose file registers from RAM on the MCU device being emulated.

Directives
Directives provide control of the assembler’s operation by telling NYASM how to treat mnemonics, define

data, and format the listing file. Directives make coding easier and provide custom output according to

specific needs.

Expressions
Expressions are used in the operand field of the source line and may contain constants, symbols, or any

combination of constants and symbols separated by arithmetic operators.

Forward reference
Forward reference means to apply variable or function before defining data. NYASM doesn’t allow the

forward reference command, e.g., the undefined Macro can not be applied, the undefined constant can

not be applied.

NYASM User Manual

Ver. 5.6 2025/11/25 86

Identifier
A function or variable name.

Initialized Data

Data which is defined with an initial value. In C, int myVar=5; defines a variable which will reside in an

initialized data section.

Listing Directives
Listing Directives are those directives that control the NYASM listing file format. They allow the

specification of base-numbering system, reserved memory access and other listing control.

Listing File
A listing file is an ASCII text file that shows the machine code generated for each assembly instruction,

NYASM directive, or macro encountered in a source file.

Local Label
A local label is one that is defined with the LOCAL directive. These labels are particular to a given

instance of the macro’s instantiation. In other words, the symbols and labels that are declared as local are

purged from the symbol table when the ENDM macro is encountered.

Macro
A macro is a collection of assembler instructions that are included in the assembly code when the macro

name is encountered in the source code. Macros must be defined before they are used; forward

references to macros are not allowed. All statements following the MACRO directive are part of the macro

definition. Labels used within the macro must be local to the macro so the macro can be called

repetitively.

Macro Directives
These directives control the execution and data allocation within macro body definitions.

Mnemonics
These are instructions that are translated directly into machine code. These are used to perform

arithmetic and logical operations on data residing in program or data memory of a micro-controller. They

also have the ability to move data in and out of registers and memory as well as change the flow of

program execution. Also referred to as Opcodes.

NYASM

Nyquest Technology Corporation Limited’s MCU assembler.

Nesting Depth
Macros can be nested to 16 levels deep (default). Maximum depth is 256.

Operators
Operators are arithmetic symbols, like the plus sign ‘+’ and the minus sign ‘-’, that are used when forming

well-defined expressions. Each operator has an assigned precedence.

NYASM User Manual

Ver. 5.6 2025/11/25 87

PC
Any IBM PC compatible Personal Computer.

PC Host
The computer running Windows XP/7/8.

Precedence
Precedence is the concept that some elements of an expression get evaluated before others. Operators

of the same precedence are evaluated from left to right.

Program Memory
Memory in the emulator or simulator containing the downloaded target application firmware.

Project
A set of source files and instructions to build the binary code for an application.

Radix
Radix is the base-numbering system that the assembler uses when evaluating expressions. The default

radix is decimal (base 10). You can change the default radix and override the default radix with certain

radix override operators.

RAM
Random Access Memory (Data Memory).

Raw Data
The binary representation of code or data.

Recursion
This is the concept that a macro, having been defined, can call itself. Great care should be taken when

writing recursive macros; it is easy to get caught in an infinite loop where there will be no exit from the

recursion.

ROM
Read-only Memory.

Source Code
Source code consists of Nyquest MCU instructions and NYASM directives and macros that will be

translated into machine code. This code is suitable for use by an Nyquest development system product

like NYIDE.

Source File
The ASCII text file of Nyquest MCU instructions and NYASM directives and macros (source code) that will

be translated into machine code. It is an ASCII file that can be created using any ASCII text editor.

Stack
An area in data memory where function arguments, return values, local variables, and return addresses

are stored.

NYASM User Manual

Ver. 5.6 2025/11/25 88

Symbol
A symbol is a general purpose mechanism for describing the various pieces which comprise a program.

These pieces include function names, variable names, file names, macro names, etc.

Un-initialized Data
Data which is defined without an initial value. In C, int myVar.

NOTES: Information contained in this publication regarding device applications and the like is intended for

suggestion only and may be superseded by updates. No representation or warranty is given and no

liability is assumed by Nyquest Technology Corporation Limited with respect to the accuracy or use of

such information, or infringement of patents or other intellectual property rights arising from such use

or otherwise. Use of Nyquest’s products as critical components in life support systems is not

authorized except with express written approval by Nyquest. No licenses are conveyed, implicitly or

otherwise, under any intellectual property rights. The Nyquest logo and name are registered

trademarks of Nyquest Technology Corporation Limited and other countries. All rights reserved. All

other trademarks mentioned herein are the property of their respective companies.

2008 Nyquest Technology Corporation Limited

All rights reserved. © 2008 Nyquest Technology Corporation Limited. Published in TAIWAN.

	1 General Information
	1.1 About This Guide
	1.1.1 Document Layout
	1.1.2 Conventions Used in This Guide
	1.1.3 Updates

	1.2 Recommended Reading
	1.3 The Nyquest Internet Web Site
	1.4 Development Systems Customer Notification Service
	1.5 Customer Support

	2 NYASM Preview
	2.1 System Requirements
	2.2 What NYASM Does
	2.3 Compatibility Issues

	3 NYASM Installation and Getting Started
	3.1 Installation
	3.2 Overview of Assembler
	3.3 Assembler Input/Output Files
	3.3.1 Source Code Format (.ASM)
	3.3.2 Listing File Format (.LST)
	3.3.3 Error File Format (.ERR)
	3.3.4 Hex File Formats (.HEX)
	3.3.5 Symbol and Debug File Format (.DBG)

	4 Using NYASM with Windows
	4.1 User Interface
	4.2 Introduction

	5 Directive Language
	5.1 Highlights
	5.2 NY4, NY5, NY7, NY8A, NY9
	5.2.1 Directive Summary
	5.2.2 BREAK – Jump Out Point in a Logic Block
	5.2.3 CASE – Define an Option Item of SWITCH
	5.2.4 CBLOCK – Define a Block of Constants
	5.2.5 CONSTANT – Declare Symbol Constant
	5.2.6 CONTINUE – Ignore Statements Afterward and Start Next Loop
	5.2.7 DEFAULT – Define an Unconditional Item of SWITCH
	5.2.8 #DEFINE – Define a Text Substitution Label
	5.2.9 DW – Declare Data of One Word
	5.2.10 DWS – Encode Text as 16-bit Data
	5.2.11 ELSE – Begin Alternative Assembly Block to IF
	5.2.12 END – End Program Block
	5.2.13 ENDC – End an Automatic Constant Block
	5.2.14 ENDFOR – End a For Loop
	5.2.15 ENDIF – End Conditional Assembly Block
	5.2.16 ENDM – End a Macro Definition
	5.2.17 ENDS – Coding Convenience
	5.2.18 ENDSW – End a Switch Block
	5.2.19 ENDW – End a While Loop
	5.2.20 EQU – Define an Assembler Constant
	5.2.21 ERROR – Issue an Error Message
	5.2.22 EXITM – Exit from a Macro
	5.2.23 EXPAND – Expand Macro Listing
	5.2.24 EXTERN – External Symbol
	5.2.25 FOR – Perform For Loop While Iterator Meets the Condition
	5.2.26 IF – Begin Conditionally Assembled Code Block
	5.2.27 IFDEF – Execute If Symbol has Been Defined
	5.2.28 IFNDEF – Execute If Symbol has not Been Defined
	5.2.29 #INCLUDATA – Include Binary Data File
	5.2.30 #INCLUDE – Include Additional Source File
	5.2.31 LINES – Reset Line Count per Listing Page
	5.2.32 LIST – Listing Options
	5.2.33 LOCAL – Declare Local Macro Variable
	5.2.34 MACRO – Declare Macro Definition
	5.2.35 MAXMACRODEPTH – Define Maximum Macro Depth
	5.2.36 MESSG – Create User Defined Message
	5.2.37 NEWPAGE – Insert Listing Page Eject
	5.2.38 NOEXPAND – Turn off Macro Expansion
	5.2.39 ORG – Set Program Origin
	5.2.40 ORGALIGN – Set Program Origin With Address Alignment
	5.2.41 RADIX – Specify Default Radix
	5.2.42 REPEAT – Begin a Repeat-Until Loop Block Definition
	5.2.43 SUBTITLE – Specify Program Subtitle
	5.2.44 SWITCH – Begin Conditional Switching Assembly Block
	5.2.45 TITLE – Specify Program Title
	5.2.46 #UNDEFINE – Delete a Substitution Label
	5.2.47 UNTIL – Perform Loop Until Condition is True
	5.2.48 VARIABLE – Declare Symbol Variable
	5.2.49 WHILE – Perform Loop While Condition is True
	5.2.50 .ALIGN2 – AlignThe Staring Address of Program

	5.3 NY8L
	5.3.1 Directive Summary
	5.3.2 .And – Boolean AND Operation
	5.3.3 .BANKBYTE – Access Bank Byte
	5.3.4 .BITAND - Bit AND Operation
	5.3.5 .BITNOT – Bit NOT Operation
	5.3.6 .BITOR – Bit XOR Operation
	5.3.7 .BITXOR – Bit XOR Operation
	5.3.8 .BLANK – Check Blank Symbol
	5.3.9 .BYTE – Low Byte
	5.3.10 .CEIL – Unconditional Carry
	5.3.11 .CODE - The abbreviation of .segment “code”
	5.3.12 .DATA - The abbreviation of .segment “data”
	5.3.13 .DEFINE – Definition
	5.3.14 .DEFINED – Check Whether the Symbol Is Defined
	5.3.15 .ELSE – Begin Alternative Assembly Block to IF
	5.3.16 .ELSEIF –Begin Alternative Assembly Block After IF And The Specified Condition Is True
	5.3.17 .ENDIF – End Conditional Assembly Block
	5.3.18 .ENDMACRO – End Macro Defined Block
	5.3.19 .ENDREPEAT – End the Repeating Scope
	5.3.20 .ENDSCOPE – End Variable Scope
	5.3.21 .ENDSTRUCT – End Structure Block
	5.3.22 .EQU – Define an Assembler Constant
	5.3.23 .ERROR –Issue A Compilation Error Message
	5.3.24 .EXPORT – Export Symbol
	5.3.25 .EXPORTZP – Export Zero Page Symbol
	5.3.26 .EXTERN – Declare External Symbol
	5.3.27 .EXTERNZP – Declare Global Zero Page Symbol
	5.3.28 .FLOOR – Unconditional Round Down
	5.3.29 .HIBYTE – High Byte
	5.3.30 .IF – Conditional Assembly
	5.3.31 .IFBLANK – Conditional Assembly If Parameter Is Blank
	5.3.32 .IFDEF – Conditional Assembly If Defined
	5.3.33 .IFNBLANK – Conditional Assembly If Parameter Isn’t Blank
	5.3.34 .IFNDEF – Conditional Assembly If Undefined
	5.3.35 .IMPORT – Import Symbol
	5.3.36 .IMPORTZP – Import Zero Page Symbol
	5.3.37 .INCBIN – Insert Binary File
	5.3.38 .INCLUDE – Include File
	5.3.39 .LOBYTE – Low Byte
	5.3.40 .LOCAL – Declare Local Macro Variable
	5.3.41 .MACRO – Declare Macro
	5.3.42 .MOD – Remainder Operation
	5.3.43 .NOT – Boolean Reverse Operation
	5.3.44 .OR – Boolean Or Operation
	5.3.45 .ORG – Set Program Origin
	5.3.46 .REPEAT - Begin a Repeat-Until Loop Block Definition
	5.3.47 .RES – Reserve Space
	5.3.48 .ROUND – Round
	5.3.49 .SCOPE – Start Variable Scope
	5.3.50 .SEGMENT – Program Segment
	5.3.51 .SETCPU – Setup CPU
	5.3.52 .SHL – Left Shift
	5.3.53 .SHR – Right Shift
	5.3.54 .STRING – Access String
	5.3.55 .WORD - Word
	5.3.56 .XOR – Boolean Exclusive Or

	Directive
	Description
	Syntax

	OPTION
	Directive
	Description
	Syntax

	6 Macro Language
	6.1 Macro Syntax for NY4, NY5, NY7, NY8A, NY9
	6.1.1 Macro Directives
	6.1.2 Text Substitution
	6.1.3 Macro Usage

	6.2 Macro Syntax for NY8L
	6.2.1 MACRO Syntax
	6.2.2 Macro Directives
	6.2.3 Text Substitution
	6.2.4 Macro Usage

	7 Expression Syntax and Operation
	7.1 NY4, NY5, NY7, NY8A, NY9
	7.1.1 Numeric Constants and Radix
	7.1.2 High/Mid/Low
	7.1.3 Increment/Decrement (++/--)

	7.2 NY8L
	7.2.1 Numeric constants and Radix
	7.2.2 High/Mid/Low

	8 Revision History
	Appendix A - Quick Reference
	A.1 NYASM Quick Reference
	A.2 MCU List

	Directive
	Description
	Syntax
	DATA
	MACRO

	OPTION
	Appendix B - Glossary
	B.1 Terms

